• Abualnaja, Y., V. P. Papadopoulos, S. A. Josey, I. Hoteit, H. Kontoyiannis, and D. E. Raitsos, 2015: Impact of climate modes on air–sea heat exchange in the Red Sea. J. Climate, 28, 26652681, https://doi.org/10.1175/JCLI-D-14-00379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variation data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744, https://doi.org/10.1175/2008MWR2602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, https://doi.org/10.1175/JCLI-D-14-00477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 17631775, https://doi.org/10.1175/1520-0469(1993)050<1763:TEOCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Foti, G., C. Gommenginger, P. Jales, M. Unwin, A. Shaw, C. Robertson, and J. Rosell, 2015: Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett., 42, 54355441, https://doi.org/10.1002/2015GL064204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2012: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Environmental Sciences, Springer, 21–72.

    • Crossref
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 94, 18491870, https://doi.org/10.1175/mwr-d-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092923, https://doi.org/10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, https://doi.org/10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, R. R., K. M. Weickmann, and J. E. Kutzbach, 1986: Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Mon. Wea. Rev., 114, 605623, https://doi.org/10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaFleur, D. M., B. S. Barrett, and G. R. Henderson, 2015: Some climatological aspects of the Madden–Julian oscillation (MJO). J. Climate, 28, 60396053, https://doi.org/10.1175/JCLI-D-14-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, https://doi.org/10.1175/2008MWR2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, R. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, https://doi.org/10.1175/MWR-D-13-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 407 pp., https://doi.org/10.1002/9780470682104.

    • Crossref
    • Export Citation
  • Mo, K. C., C. Jones, and J. Nogués Paegle, 2012: Pan America. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Environmental Sciences, Springer, 111–145.

    • Crossref
    • Export Citation
  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, https://doi.org/10.1175/BAMS-D-12-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, A., 2014: End-to-end simulator technical memo. Space Physics Research Laboratory Doc. 148-0123, University of Michigan, 24 pp., http://clasp-research.engin.umich.edu/missions/cygnss/reference/148-0123_CYGNSS_E2ES_EM.pdf.

  • O’Brien, A., S. Gleason, J. Johnson, and C. Ruf, 2015: The CYGNSS end-to-end simulator (E2ES). GNSS+R 2015 Workshop, Potsdam, Germany, GFZ, S5T03, ftp://ftp.gfz-potsdam.de/pub/GNSS/workshops/gnssr2015/session5/S5T03_OBrien_-_The_CYGNSS_end-to-end_simulator.pdf.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian oscillation over the Indian ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, https://doi.org/10.1002/2013jd020421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley-Dellaripa, E. M., E. D. Maloney, and S. van den Heever, 2016: Diagnosing moistening processes of the November DYNAMO MJO by cloud resolving model simulations. 32nd Conf. on Hurricanes and Tropical Meteorology, San Juan, Puerto Rico, Amer. Meteor. Soc., 17B.9, https://ams.confex.com/ams/32Hurr/webprogram/Paper293550.html.

  • Rowe, A. K., and R. A. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, https://doi.org/10.1002/2013jd020799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C., A. Lyons, M. Unwin, J. Dickinson, R. Rose, D. Rose, and M. Vincent, 2013a: CYGNSS: Enabling the future of hurricane prediction. IEEE Geosci. Remote Sens. Mag., 52–67, https://doi.org/10.1109/mgrs.2013.2260911.

    • Crossref
    • Export Citation
  • Ruf, C., A. Lyons, and A. Ward, 2013b: NASA intensifies hurricane studies with CYGNSS. The Earth Observer, Vol. 25, No. 3, Earth Observing System Project Science Office, Greenbelt, MD, 12–21.

  • Ruf, C., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, https://doi.org/10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skyllingstad, E. D., and S. P. de Szoeke, 2015: Cloud-resolving large-eddy simulation of tropical convective development and surface fluxes. Mon. Wea. Rev., 143, 24412458, https://doi.org/10.1175/MWR-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2 (2), https://doi.org/10.3894/JAMES.2010.2.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solodoch, A., W. R. Boss, Z. Kuang, and E. Tziperman, 2011: Excitation of intraseasonal variability in the equatorial atmosphere by Yanai wave groups via WISHE-induced convection. J. Atmos. Sci., 68, 210225, https://doi.org/10.1175/2010JAS3564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30-60 day) fluctuations of outgoing longwave radiation and the 250-mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and J. L. McBride, 2012: Australasian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Environmental Sciences, Springer, 147–197.

    • Crossref
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, https://doi.org/10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788, https://doi.org/10.1175/JAM2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422, https://doi.org/10.1175/JAM2439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2015: Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO and TRMM. J. Atmos. Sci., 72, 623640, https://doi.org/10.1175/JAS-D-14-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004rg000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, https://doi.org/10.1002/grl.50244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze, 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, https://doi.org/10.1175/JAS-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 85 6
PDF Downloads 191 142 8

Use of an End-to-End-Simulator to Analyze CYGNSS

View More View Less
  • 1 Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 NASA Marshall Space Flight Center, Huntsville, Alabama
  • | 3 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 4 Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama
  • | 5 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical convection during the onset of two Madden–Julian oscillation (MJO) events, in October and December of 2011, was simulated using the Weather Research and Forecasting (WRF) Model. Observations from the Dynamics of the MJO (DYNAMO) field campaign were assimilated into the WRF Model for an improved simulation of the mesoscale features of tropical convection. The WRF simulations with the assimilation of DYNAMO data produced realistic representations of mesoscale convection related to westerly wind bursts (WWBs) as well as downdraft-induced gust fronts. An end-to-end simulator (E2ES) for the Cyclone Global Navigation Satellite System (CYGNSS) mission was then applied to the WRF dataset, producing simulated CYGNSS near-surface wind speed data. The results indicated that CYGNSS could detect mesoscale wind features such as WWBs and gust fronts even in the presence of simulated heavy precipitation. This study has two primary conclusions as a consequence: 1) satellite simulators could be used to examine a mission’s capabilities for accomplishing secondary tasks and 2) CYGNSS likely will provide benefits to future tropical oceanic field campaigns that should be considered during their planning processes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Mecikalski, john.mecikalski@nsstc.uah.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Tropical convection during the onset of two Madden–Julian oscillation (MJO) events, in October and December of 2011, was simulated using the Weather Research and Forecasting (WRF) Model. Observations from the Dynamics of the MJO (DYNAMO) field campaign were assimilated into the WRF Model for an improved simulation of the mesoscale features of tropical convection. The WRF simulations with the assimilation of DYNAMO data produced realistic representations of mesoscale convection related to westerly wind bursts (WWBs) as well as downdraft-induced gust fronts. An end-to-end simulator (E2ES) for the Cyclone Global Navigation Satellite System (CYGNSS) mission was then applied to the WRF dataset, producing simulated CYGNSS near-surface wind speed data. The results indicated that CYGNSS could detect mesoscale wind features such as WWBs and gust fronts even in the presence of simulated heavy precipitation. This study has two primary conclusions as a consequence: 1) satellite simulators could be used to examine a mission’s capabilities for accomplishing secondary tasks and 2) CYGNSS likely will provide benefits to future tropical oceanic field campaigns that should be considered during their planning processes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Mecikalski, john.mecikalski@nsstc.uah.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save