• Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831162, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaugrand, G., 2004: The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr., 60, 245262, https://doi.org/10.1016/j.pocean.2004.02.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedacht, E., S. K. Gulev, and A. Macke, 2007: Intercomparison of global cloud cover fields over oceans from the VOS observations and NCEP/NCAR reanalysis. Int. J. Climatol., 27, 17071719, https://doi.org/10.1002/joc.1490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. P. Dee, K. Fielding, M. Fuentes, P. Kållberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ECMWF ERA Rep. Series 1, 16 pp.

  • Bersch, M., V. Gouretski, R. Sadikni, and I. Hinrichs, 2013: KLIWAS North Sea climatology of hydrographic data (version 1.0). DKRZ World Data Center for Climate, accessed 11 January 2018, https://doi.org/10.1594/WDCC/KNSC_hyd_v1.0.

    • Crossref
    • Export Citation
  • Betts, A. K., J. H. Ball, and P. Viterbo, 2003: Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. ERA-40 Project Rep. Series 6, 33 pp., https://www.ecmwf.int/sites/default/files/elibrary/2003/8216-evaluation-era-40-surface-water-budget-and-suface-temperature-mackenzie-river-basin.pdf.

    • Crossref
    • Export Citation
  • BMVI, 2016: KLIWAS: Impacts of climate change on waterways and navigation in Germany; Concluding report of the BMVI: Technical conclusions from the results of the KLIWAS research programme. Federal Ministry of Transport and Digital Infrastructure, 111 pp., http://www.kliwas.de/KLIWAS/EN/Service/Downloads/publications/concluding_report.html?nn=186428.

  • Bollmeyer, C., and Coauthors, 2015: Towards a high-resolution regional reanalysis for the European CORDEX domain. Quart. J. Roy. Meteor. Soc., 141, 115, https://doi.org/10.1002/qj.2486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, https://doi.org/10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buelow, K., and Coauthors, 2013: Comparing meteorological fields of the ENSEMBLES regional climate models with ERA-40 data over the North Sea. KLIWAS Schriftenreihe KLIWAS-21/2013, 133 pp., https://doi.org/10.5675/KLIWAS_21.2013_ERA40data.

    • Crossref
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cram, T. A., and Coauthors, 2015: The International Surface Pressure Databank version 2. Geosci. Data J., 2, 3146, https://doi.org/10.1002/gdj3.25.

  • Davis, G., 2007: History of the NOAA satellite program. Appl. Remote Sens. J., 1, 012504, https://doi.org/10.1117/1.2642347.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C., and G. Villarini, 2012: Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J. Geophys. Res., 117, D05123, https://doi.org/10.1029/2011JD016988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS Release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, V. O., and B. J. Soden, 2007: Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys. Res. Lett., 34, L18704, https://doi.org/10.1029/2007GL030429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspar, F., B. Tinz, H. Mächel, and L. Gates, 2015: Data rescue of national and international meteorological observations at Deutscher Wetterdienst. Adv. Sci. Res., 12, 5761, https://doi.org/10.5194/asr-12-57-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and D. I. Berry, 2005: Quantifying random measurement errors in voluntary observing ship’s meteorological observations. Int. J. Climatol., 25, 843856, https://doi.org/10.1002/joc.1167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Yhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewe, P., Ed., 2009: System Nordsee: Zustand 2005 im Kontext langzeitlicher Entwicklungen. Bundesamt für Seeschifffahrt und Hydrographie Berichte des BSH 44, 261 pp., http://www.bsh.de/de/Produkte/Buecher/Berichte_/Bericht44/index.jsp.

  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, https://doi.org/10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhamaa, A., K. Kimmel, A. Maennik, and R. Room, 2011: High resolution re-analysis for the Baltic Sea region during 1965–2005 period. Climate Dyn., 36, 727738, https://doi.org/10.1007/s00382-010-0842-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, https://doi.org/10.1029/2008GL035627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int. J. Climatol., 31, 545557, https://doi.org/10.1002/joc.2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawson, S., and M. Fiorino, 1999: A comparison of reanalyses in the tropical stratosphere. Part 3: Inclusion of the pre-satellite data era. Climate Dyn., 15, 241250, https://doi.org/10.1007/s003820050279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadikni, R., M. Bersch, A. Jahnke-Bornemann, and I. Hinrichs, 2013: KLIWAS North Sea climatology of meteorological data (version 1.0). DKRZ World Data Center for Climate, accessed 11 January 2018, https://doi.org/10.1594/WDCC/KNSC_met_v1.0.

    • Crossref
    • Export Citation
  • Sadikni, R., N. H. Schade, A. Jahnke-Bornemann, I. Hinrichs, L. Gates, B. Tinz, and D. Stammer, 2018: The KLIWAS North Sea climatology. Part I: Processing of the atmospheric data. J. Atmos. Oceanic Technol., https://doi.org/10.1175/JTECH-D-17-0044.1, 111–126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, N. H., H. Heinrich, and G. Rosenhagen, 2013: Regional evaluation of ERA-40 reanalysis data with marine atmospheric observations in the North Sea area. Meteor. Z., 22, 675684, https://doi.org/10.1127/0941-2948/2013/0471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2011: Erroneous arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24, 26202627, https://doi.org/10.1175/2010JCLI4054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, 675684, https://doi.org/10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in) homogeneity of reanalysis products. J. Climate, 17, 38663873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends. Bull. Amer. Meteor. Soc., 91, 353361, https://doi.org/10.1175/2009BAMS2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12, 494510, https://doi.org/10.1175/1520-0442(1999)012<0494:DCITAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WCRP, 2012: Report of the 4th World Climate Research Programme International Conference on Reanalyses. WCRP Rep. 12/2012, 41 pp., http://www.wcrp-climate.org/documents/ICR4_Report.pdf.

  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1988: General meteorological standards and recommended practices. Vol. I, Technical regulations, Basic Doc. 2, WMO-49, 82 pp., http://www.wmo.int/pages/prog/hwrp/publications/technical_regulations/WMO_N49_TechnReg_Vol1.pdf.

  • WMO, 1994: International list of selected, supplementary and auxiliary ships. WMO-47, https://www.wmo.int/pages/prog/www/ois/pub47/pub47-home.htm.

  • WMO, 2015: Manual on the Global Telecommunication System: Annex III to the WMO technical regulations. WMO-386, 214 pp. [Available online at https://library.wmo.int/opac/doc_num.php?explnum_id=3678.

  • Woodruff, S. D., and Coauthors, 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842, https://doi.org/10.1002/joc.1166.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 75 4
PDF Downloads 136 70 9

The KLIWAS North Sea Climatology. Part II: Assessment against Global Reanalyses

View More View Less
  • 1 Federal Maritime and Hydrographic Agency (BSH), and Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
  • | 2 Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
  • | 3 Deutscher Wetterdienst (DWD), Hamburg, Germany
  • | 4 Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observational reference datasets are needed in atmosphere and ocean for quality assessments of climate models and for the evaluation of atmospheric reanalyses. To meet this demand on the regional scale, the Climate Water Navigation (KLIWAS) North Sea climatology (KNSC) was developed. This paper uses KNSC to assess the quality of five atmospheric reanalysis products [ERA-40; ERA-Interim; NCEP-1; 20CR, version 2 (20CRv2); and MERRA] over the North Sea from 1979 to 2001. Differences in sea level pressure (2-m air temperature) can be found in coastal regions for ERA-40/ERA-Interim and MERRA, and are more pronounced during positive (negative) phases of the NAO. 20CRv2 shows biases over the entire North Sea and all seasons of several hectopascals. ERA-40 and ERA-Interim show a negative 2-m air temperature bias relative to KNSC along the coastal mainland of Europe, especially during winter months, possibly a result of a remaining land influence. Mean differences result from winter and fall, mostly remaining within measurement uncertainties. Despite the upgrades in the model setup, ERA-Interim shows negligible differences from ERA-40. 20CRv2 and MERRA show positive (negative) biases during the summer (winter) half year. NCEP-1 follows ERA-40/ERA-Interim but mostly with slightly higher differences. All five reanalyses reproduce the decadal variability and climate shift signals present in KNSC fields. Overall, only 20CRv2 has to be considered as clearly unsatisfactorily regarding biases, MAE, and RMSE compared to all other datasets investigated. This study suggests that similar intercomparison studies, performed over other parts of the world’s oceans, especially coastal regions, can be very helpful in identifying shortcomings in atmospheric reanalysis products.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Nils H. Schade, nils.schade@bsh.de

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-17-0044.1

Abstract

Observational reference datasets are needed in atmosphere and ocean for quality assessments of climate models and for the evaluation of atmospheric reanalyses. To meet this demand on the regional scale, the Climate Water Navigation (KLIWAS) North Sea climatology (KNSC) was developed. This paper uses KNSC to assess the quality of five atmospheric reanalysis products [ERA-40; ERA-Interim; NCEP-1; 20CR, version 2 (20CRv2); and MERRA] over the North Sea from 1979 to 2001. Differences in sea level pressure (2-m air temperature) can be found in coastal regions for ERA-40/ERA-Interim and MERRA, and are more pronounced during positive (negative) phases of the NAO. 20CRv2 shows biases over the entire North Sea and all seasons of several hectopascals. ERA-40 and ERA-Interim show a negative 2-m air temperature bias relative to KNSC along the coastal mainland of Europe, especially during winter months, possibly a result of a remaining land influence. Mean differences result from winter and fall, mostly remaining within measurement uncertainties. Despite the upgrades in the model setup, ERA-Interim shows negligible differences from ERA-40. 20CRv2 and MERRA show positive (negative) biases during the summer (winter) half year. NCEP-1 follows ERA-40/ERA-Interim but mostly with slightly higher differences. All five reanalyses reproduce the decadal variability and climate shift signals present in KNSC fields. Overall, only 20CRv2 has to be considered as clearly unsatisfactorily regarding biases, MAE, and RMSE compared to all other datasets investigated. This study suggests that similar intercomparison studies, performed over other parts of the world’s oceans, especially coastal regions, can be very helpful in identifying shortcomings in atmospheric reanalysis products.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Nils H. Schade, nils.schade@bsh.de

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-17-0044.1

Save