• Almeida, T. G., 2012: Estimation of river characteristics from remote sensing data. Ph.D. dissertation, Michigan State University, 91 pp.

  • Dugan, J. P., S. P. Anderson, C. C. Piotrowski, and S. B. Zuckerman, 2014: Airborne infrared remote sensing of riverine currents. IEEE Trans. Geosci. Remote Sens., 52, 38953907, https://doi.org/10.1109/TGRS.2013.2277815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., K. M. Andreadis, D. E. Alsdorf, D. P. Lettenmaier, D. Moller, and M. Wilson, 2008: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys. Res. Lett., 35, L20401, https://doi.org/10.1029/2008GL034150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilldale, R. C., and D. Raff, 2008: Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Processes Landforms, 33, 773783, https://doi.org/10.1002/esp.1575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostache, R., P. Matgen, L. Giustarini, F. N. Teferle, C. Tailliez, J.-F. Iffly, and G. Corato, 2015: A drifting GPS buoy for retrieving effective riverbed bathymetry. J. Hydrol., 520, 397406, https://doi.org/10.1016/j.jhydrol.2014.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulsing, H., W. Smith, and E. D. Cobb, 1966: Velocity-head coefficients in open channels. Dept. of the Interior Geological Survey Water-Supply Paper 1869-C, 45 pp.

  • Irish, J. L., J. K. McClung, and W. J. Lillycrop, 2000: Airborne lidar bathymetry: The SHOALS system. Bull. Int. Navig. Assoc., 103, 4354.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., and H. T. Özkan-Haller, 2013: Bathymetry correction using an adjoint component of a coupled nearshore wave-circulation model: Tests with synthetic velocity data. J. Geophys. Res. Oceans, 118, 46734688, https://doi.org/10.1002/jgrc.20306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landon, K. C., G. W. Wilson, H. T. Özkan-Haller, and J. H. MacMahan, 2014: Bathymetry estimation using drifter-based velocity measurements on the Kootenai River, Idaho. J. Atmos. Oceanic Technol., 31, 503514, https://doi.org/10.1175/JTECH-D-13-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legleiter, C. J., 2012: Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surf. Processes Landforms, 37, 499518, https://doi.org/10.1002/esp.2262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legleiter, C. J., B. T. Overstreet, C. L. Glennie, Z. Pan, J. C. Fernandez-Diaz, and A. Singhania, 2016: Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments. Earth Surf. Processes Landforms, 41, 344363, https://doi.org/10.1002/esp.3794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., I. M. Navon, P. Courtier, and P. Gauthier, 1993: Variational data assimilation with a semi-Lagrangian semi-implicit global shallow-water equation model and its adjoint. Mon. Wea. Rev., 121, 17591769, https://doi.org/10.1175/1520-0493(1993)121<1759:VDAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moghimi, S., H. T. Özkan-Haller, G. W. Wilson, and A. Kurapov, 2016: Data assimilation for bathymetry estimation at a tidal inlet. J. Atmos. Oceanic Technol., 33, 21452163, https://doi.org/10.1175/JTECH-D-14-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patankar, S. V., 1981: A calculation procedure for two-dimensional elliptic situations. Numer. Heat Transf., 4, 409425, https://doi.org/10.1080/01495728108961801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantz, S. E., and Coauthors, 1982a: Measurement and computation of streamflow: Vol. 1. Measurement of stage and discharge. Dept. of the Interior Geological Survey Water-Supply Paper 2175, 313 pp.

  • Rantz, S. E., and Coauthors, 1982b: Measurement and computation of streamflow: Vol. 2. Computation of discharge. Dept. of the Interior Geological Survey Water-Supply Paper 2175, 373 pp.

  • Rekanos, I. T., and A. Raisanen, 2003: Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-based optimization technique. IEEE Trans. Magn., 39, 13811384, https://doi.org/10.1109/TMAG.2003.810526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, B. F., and S. F. Bradford, 2002: High‐resolution, monotone solution of the adjoint shallow‐water equations. Int. J. Numer. Methods Fluids, 38, 139161, https://doi.org/10.1002/fld.206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiffan, K. F., R. D. Garland, and D. W. Rondorf, 2002: Quantifying flow-dependent changes in subyearling fall Chinook salmon rearing habitat using two-dimensional spatially explicit modeling. North Amer. J. Fish. Manage., 22, 713726, https://doi.org/10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., I. Navon, F. Le Dimet, and X. Zou, 1992: The second order adjoint analysis: Theory and applications. Meteor. Atmos. Phys., 50, 320, https://doi.org/10.1007/BF01025501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, G. W., and H. T. Özkan-Haller, 2012: Ensemble-based data assimilation for estimation of river depths. J. Atmos. Oceanic Technol., 29, 15581568, https://doi.org/10.1175/JTECH-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, G. W., H. T. Özkan-Haller, and R. A. Holman, 2010: Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model. J. Geophys. Res., 115, C12057, https://doi.org/10.1029/2010JC006286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, Y., M. Durand, C. J. Merry, E. A. Clark, K. M. Andreadis, and D. E. Alsdorf, 2012: Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J. Hydrol., 464–465, 363375, https://doi.org/10.1016/j.jhydrol.2012.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., M.-A. Pradal, P. D. Miller, A. F. Blumberg, N. Georgas, W. Li, and J. Muccino Cornuelle, 2011: Bottom topography mapping via nonlinear data assimilation. J. Atmos. Oceanic Technol., 28, 16061623, https://doi.org/10.1175/JTECH-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 284 33
PDF Downloads 406 230 24

Estimating River Bathymetry from Surface Velocity Observations Using Variational Inverse Modeling

View More View Less
  • 1 SRI International, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Accurate river bathymetry characterization is important to understanding all aspects of the riparian environment and provides crucial information for ensuring the safe passage of vessels and guiding channel maintenance operations. Verified models based on readily collected physical data facilitate accurate predictions of changes to a riverbed caused by traffic, weather, and other influences. This paper presents a methodology for estimating river bathymetry from surface velocity data by applying variational inverse modeling to the shallow-water equations. The paper describes the mathematical framework for the methodology and the algorithm, and the numerical tools developed to test the methodology. The hydrodynamic modeling uses 2D depth-averaged solvers (under the hydrostatic assumption) and applies a standard empirical correlation that relates depth-averaged velocity to surface velocity. The application of the bathymetry estimation algorithm to water-surface velocity data was tested on a 95-km reach of the Columbia River in Washington State. The root-mean-square error (RMSE) of the estimated bathymetry field relative to the ground truth data is approximately 2 m over the entire reach. The results of the test case indicate that this approach can be used to estimate river bathymetry to a close approximation based on the bank-to-bank surface velocity data on the reach of interest.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas G. Almeida, thomas.almeida@sri.com

Abstract

Accurate river bathymetry characterization is important to understanding all aspects of the riparian environment and provides crucial information for ensuring the safe passage of vessels and guiding channel maintenance operations. Verified models based on readily collected physical data facilitate accurate predictions of changes to a riverbed caused by traffic, weather, and other influences. This paper presents a methodology for estimating river bathymetry from surface velocity data by applying variational inverse modeling to the shallow-water equations. The paper describes the mathematical framework for the methodology and the algorithm, and the numerical tools developed to test the methodology. The hydrodynamic modeling uses 2D depth-averaged solvers (under the hydrostatic assumption) and applies a standard empirical correlation that relates depth-averaged velocity to surface velocity. The application of the bathymetry estimation algorithm to water-surface velocity data was tested on a 95-km reach of the Columbia River in Washington State. The root-mean-square error (RMSE) of the estimated bathymetry field relative to the ground truth data is approximately 2 m over the entire reach. The results of the test case indicate that this approach can be used to estimate river bathymetry to a close approximation based on the bank-to-bank surface velocity data on the reach of interest.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas G. Almeida, thomas.almeida@sri.com
Save