• Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130, https://doi.org/10.2151/jmsj1965.75.1B_111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, https://doi.org/10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2015: Observing system simulation experiments (OSSEs) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction. J. Atmos. Oceanic Technol., 32, 15931613, https://doi.org/10.1175/JTECH-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, W. J., 2017: New small satellite capabilities for microwave atmospheric remote sensing. Seventh Conf. on Transition of Research to Operations/13th Annual Symp. on New Generation Operational Environmental Satellite Systems, Seattle, WA, Amer. Meteor. Soc., J11.2, https://ams.confex.com/ams/97Annual/webprogram/Paper314487.html.

  • Boukabara, S.-A., and Coauthors, 2016: Community Global Observing System Simulation Experiment (OSSE) Package (CGOP): Description and usage. J. Atmos. Oceanic Technol., 33, 17591777, https://doi.org/10.1175/JTECH-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Weng, Y. Han, and Q. Liu, 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, https://doi.org/10.1029/2007JD009561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, R. Treadon, and R. J. Purser, 2007: Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Mon. Wea. Rev., 135, 31743193, https://doi.org/10.1175/MWR3461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, https://doi.org/10.1029/2012JD017782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, S., P. Yang, F. Weng, Q. Liu, Y. Han, P. van Delst, J. Li, and B. Baum, 2011: Validation of the community radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 112, 10501064, https://doi.org/10.1016/j.jqsrt.2010.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. C. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, https://doi.org/10.1002/qj.2027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2015: Evaluation of the 7-km GEOS-5 nature run. Technical Report Series on Global Modeling and Data Assimilation, R. D. Koster, Ed., Vol. 36, NASA Tech. Memo. NASA/TM-2014-104606/Vol. 36, 285 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Gelaro736.pdf.

  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, https://doi.org/10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., 2017: PREPBUFR processing at NCEP. NCEP, http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm.

  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, https://doi.org/10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B., A. Tanner, T. Gaier, P. Kangaslahti, and S. Brown, 2007: Prototyping a new earth observing sensor—GeoSTAR. Proc. 2007 IEEE Aerospace Conf., Big Sky, MT, IEEE, 8.0503, https://doi.org/10.1109/AERO.2007.352690.

    • Crossref
    • Export Citation
  • Lambrigtsen, B., T. Gaier, A. B. Tanner, P. Kangaslahti, B. Lim, and C. Ruf, 2017: A geostationary microwave sounder: What, why, how, when. Seventh Conf. on Transition of Research to Operations, Seattle, WA, Amer. Meteor. Soc., J15.5, https://ams.confex.com/ams/97Annual/webprogram/Paper313976.html.

  • Le Marshall, J., J. Jung, T. Zapotocny, J. Derber, R. Treadon, S. Lord, M. Goldberg, and W. Wolf, 2006: The application of AIRS radiances in numerical weather prediction. Aust. Meteor. Mag., 55, 213217, http://www.bom.gov.au/amm/docs/2006/lemarshall_hres.pdf.

    • Search Google Scholar
    • Export Citation
  • Pavia, E. G., and J. J. O’Brien, 1986: Weibull statistics of wind speed over the ocean. J. Climate Appl. Meteor., 25, 13241332, https://doi.org/10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., A. Darmenov, A. da Silva, R. Gelaro, A. Molod, L. Ott, and M. J. Suarez, 2015: A 7-km non-hydrostatic global mesoscale simulation for OSSEs with the Goddard Earth Observing System model (GEOS-5). 19th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 3.1, https://ams.confex.com/ams/95Annual/webprogram/Paper260701.html.

  • Reale, O., D. Achuthavarier, M. Fuentes, W. M. Putman, and G. Partyka, 2017: Tropical cyclones in the 7-km NASA global nature run for use in observing system simulation experiments. J. Atmos. Oceanic Technol., 34, 73100, https://doi.org/10.1175/JTECH-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 2001: Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens., 39, 24292435, https://doi.org/10.1109/36.964979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28, 32633266, https://doi.org/10.1029/2001GL013117.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 207 3
PDF Downloads 172 119 11

Community Global Observing System Simulation Experiment (OSSE) Package (CGOP): Perfect Observations Simulation Validation

View More View Less
  • 1 NOAA/NESDIS/Center for Satellite Applications and Research (STAR), College Park, Maryland
  • | 2 Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland
  • | 3 Riverside Technology, Inc., Silver Spring, Maryland
  • | 4 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 5 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 6 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 7 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The simulation of observations—a critical Community Global Observing System Simulation Experiment (OSSE) Package (CGOP) component—is validated first by a comparison of error-free simulated observations for the first 24 h at the start of the nature run (NR) to the real observations for those sensors that operated during that period. Sample results of this validation are presented here for existing low-Earth-orbiting (LEO) infrared (IR) and microwave (MW) brightness temperature (BT) observations, for radio occultation (RO) bending angle observations, and for various types of conventional observations. For sensors not operating at the start of the NR, a qualitative validation is obtained by comparing geographic and statistical characteristics of observations over the initial day for such a sensor and an existing similar sensor. The comparisons agree, with no significant unexplained bias, and to within the uncertainties caused by real observation errors, time and space collocation differences, radiative transfer uncertainties, and differences between the NR and reality. To validate channels of a proposed future MW sensor with no equivalent existing spaceborne sensor channel, multiple linear regression is used to relate these channels to existing similar channels. The validation then compares observations simulated from the NR to observations predicted by the regression relationship applied to actual real observations of the existing channels. Overall, the CGOP simulations of error-free observations from conventional and satellite platforms that make up the global observing system are found to be reasonably accurate and suitable as a starting point for creating realistic simulated observations for OSSEs. These findings complete a critical step in the CGOP validation, thereby reducing the caveats required when interpreting the OSSE results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sid-Ahmed Boukabara, sid.boukabara@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0012.1

Abstract

The simulation of observations—a critical Community Global Observing System Simulation Experiment (OSSE) Package (CGOP) component—is validated first by a comparison of error-free simulated observations for the first 24 h at the start of the nature run (NR) to the real observations for those sensors that operated during that period. Sample results of this validation are presented here for existing low-Earth-orbiting (LEO) infrared (IR) and microwave (MW) brightness temperature (BT) observations, for radio occultation (RO) bending angle observations, and for various types of conventional observations. For sensors not operating at the start of the NR, a qualitative validation is obtained by comparing geographic and statistical characteristics of observations over the initial day for such a sensor and an existing similar sensor. The comparisons agree, with no significant unexplained bias, and to within the uncertainties caused by real observation errors, time and space collocation differences, radiative transfer uncertainties, and differences between the NR and reality. To validate channels of a proposed future MW sensor with no equivalent existing spaceborne sensor channel, multiple linear regression is used to relate these channels to existing similar channels. The validation then compares observations simulated from the NR to observations predicted by the regression relationship applied to actual real observations of the existing channels. Overall, the CGOP simulations of error-free observations from conventional and satellite platforms that make up the global observing system are found to be reasonably accurate and suitable as a starting point for creating realistic simulated observations for OSSEs. These findings complete a critical step in the CGOP validation, thereby reducing the caveats required when interpreting the OSSE results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sid-Ahmed Boukabara, sid.boukabara@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0012.1

Save