• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berre, L., O. Pannekoucke, G. Desroziers, S. Ştefănescu, B. Chapnik, and L. Raynaud, 2007: A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 151–168.

  • Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, https://doi.org/10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Wang, J. Min, X.-Y. Huang, P. Minnis, R. Zhang, J. Haggerty, and R. Palikonda, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol., 54, 18091825, https://doi.org/10.1175/JAMC-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 24492461, https://doi.org/10.1002/qj.49712354414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, https://doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Q. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman Filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Wea. Rev., 142, 33263346, https://doi.org/10.1175/MWR-D-14-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727745, https://doi.org/10.1175/WAF-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., C. H. Fu, D. J. Stensrud, and J. S. Kain, 2016: OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci., 73, 24032426, https://doi.org/10.1175/JAS-D-15-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 14531468, https://doi.org/10.1002/qj.49712757418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. Carely, L. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 22722289, https://doi.org/10.1175/MWR-D-12-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, L. Wicker, P. Minnis, and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, https://doi.org/10.1175/MWR-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y. H., X. Zou, and Y. R. Guo, 1996: Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments. Mon. Wea. Rev., 124, 122147, https://doi.org/10.1175/1520-0493(1996)124<0122:VAOPWU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., T. J. Schmit, X. Jin, and G. Martin, 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for legacy atmospheric moisture profile, legacy atmospheric temperature profile, total precipitable water, and derived atmospheric stability indices. Version 2.0, NOAA/NESDIS/STAR, 106 pp.

  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J. N. Thepaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, https://doi.org/10.1256/qj.02.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140, 258265, https://doi.org/10.1175/MWR-D-10-05047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008a: Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, https://doi.org/10.1109/TGRS.2008.2001351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008b: Near-real time cloud retrievals from operational and research meteorological satellites. Remote Sensing of Clouds and the Atmosphere XIII, R. H. Picard et al., Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 7107), 710703, https://doi.org/10.1117/12.800344.

    • Crossref
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A., and H. Niino, 2003: Critical grid size for simulating convective storms: A case study of the Del City supercell storm. Geophys. Res. Lett., 30, 1844, https://doi.org/10.1029/2003gl017498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 16031614, https://doi.org/10.1002/qj.2242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737749, https://doi.org/10.1002/qj.243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755773, https://doi.org/10.1175/2010MWR3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., T. Vukicevic, and K. F. Evans, 2010: Validation of cloud-resolving model background data for cloud data assimilation. Mon. Wea. Rev., 138, 781795, https://doi.org/10.1175/2009MWR3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prates, C., S. Migliorini, S. English, and E. Pavelin, 2014: Assimilation of satellite infrared sounding measurements in the presence of heterogeneous cloud fields. Quart. J. Roy. Meteor. Soc., 140, 20622077, https://doi.org/10.1002/qj.2279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, https://doi.org/10.1002/qj.1999.49712555615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 11561165, https://doi.org/10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., M. Lindskog, P. Unden, and N. Gustafsson, 2013: The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 139, 20812096, https://doi.org/10.1002/qj.2102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. D. Gao, 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 12501272, https://doi.org/10.1175/2009MWR3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 1487, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Z., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813, https://doi.org/10.1175/MWR2887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132, 30663077, https://doi.org/10.1175/MWR2837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., M. Sengupta, A. S. Jones, and T. Vonder Haar, 2006: Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation. J. Atmos. Sci., 63, 901919, https://doi.org/10.1175/JAS3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., J. Li, J. L. Li, D. K. Zhou, H.-L. Huang, M. D. Goldberg, and P. Yang, 2007: Cloudy sounding and cloud-top height retrieval from AIRS alone single field-of-view radiance measurements. Geophys. Res. Lett., 34, L12802, https://doi.org/10.1029/2007gl030219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, https://doi.org/10.1175/2007JAS2112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., and Q. H. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 26332646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., and L. Wei, 2013: Prognostic equation for radar radial velocity derived by considering atmospheric refraction and Earth curvature. J. Atmos. Sci., 70, 33283338, https://doi.org/10.1175/JAS-D-13-011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., H. Gu, and S. Yang, 2001: Simple adjoint method for three-dimensional wind retrievals from single-Doppler radar. Quart. J. Roy. Meteor. Soc., 127, 10531067, https://doi.org/10.1002/qj.49712757319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538, https://doi.org/10.1175/2009MWR2925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., S. Q. Zhang, M. Zupanski, A. Y. Hou, and S. H. Cheung, 2011: A prototype WRF-based ensemble data assimilation system for dynamically downscaling satellite precipitation observations. J. Hydrometeor., 12, 118134, https://doi.org/10.1175/2010JHM1271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 152 14
PDF Downloads 286 184 23

Assimilation of Radar Radial Velocity and Reflectivity, Satellite Cloud Water Path, and Total Precipitable Water for Convective-Scale NWP in OSSEs

View More View Less
  • 1 School of Meteorology, and Cooperate Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 5 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, the ensemble of three-dimensional variational data assimilation (En3DVar) method for convective-scale weather is adopted and evaluated using an idealized supercell storm simulated by the Weather Research and Forecasting (WRF) Model. Synthetic radar radial velocity, reflectivity, satellite-derived cloud water path (CWP), and total precipitable water (TPW) data are produced from the simulated supercell storm and then these data are assimilated into another WRF Model run that starts with no convection. Two types of experiments are performed. The first assimilates radar and satellite CWP data using a perfect storm environment. The second assimilates additional TPW data using a storm environment with dry bias. The first set of experiments indicates that incorporating CWP and radar data into the assimilation leads to a much faster initiation of supercell storms than found using radar data alone. Assimilating CWP data primarily improves the analyses of nonprecipitating hydrometeor variables. The results from the second set of experiments demonstrate the critical importance of the storm environment. When using the biased storm environment, assimilation of CWP and radar data enhances the analyses, but the forecast skill rapidly decreases over the subsequent 1-h forecast. Further experiments show that assimilating the TPW data has a large impact on storm environment that is essential to the accuracy of the storm forecasts. In general, the combination of radar data and satellite data within the En3DVar results in better analyses and forecasts than when only radar data are used, especially for an imperfect storm environment.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jidong Gao, jidong.gao@noaa.gov

Abstract

In this study, the ensemble of three-dimensional variational data assimilation (En3DVar) method for convective-scale weather is adopted and evaluated using an idealized supercell storm simulated by the Weather Research and Forecasting (WRF) Model. Synthetic radar radial velocity, reflectivity, satellite-derived cloud water path (CWP), and total precipitable water (TPW) data are produced from the simulated supercell storm and then these data are assimilated into another WRF Model run that starts with no convection. Two types of experiments are performed. The first assimilates radar and satellite CWP data using a perfect storm environment. The second assimilates additional TPW data using a storm environment with dry bias. The first set of experiments indicates that incorporating CWP and radar data into the assimilation leads to a much faster initiation of supercell storms than found using radar data alone. Assimilating CWP data primarily improves the analyses of nonprecipitating hydrometeor variables. The results from the second set of experiments demonstrate the critical importance of the storm environment. When using the biased storm environment, assimilation of CWP and radar data enhances the analyses, but the forecast skill rapidly decreases over the subsequent 1-h forecast. Further experiments show that assimilating the TPW data has a large impact on storm environment that is essential to the accuracy of the storm forecasts. In general, the combination of radar data and satellite data within the En3DVar results in better analyses and forecasts than when only radar data are used, especially for an imperfect storm environment.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jidong Gao, jidong.gao@noaa.gov
Save