• Abe, K., 1984: Evaluation of GMS-derived sea surface temperature in the southern hemisphere. Aust. Meteor. Mag., 32, 5574.

  • Agarwal, D. K., J. A. Silander, A. E. Gelfand, R. E. Dewar, and J. G. Mickelson, 2005: Tropical deforestation in Madagascar: Analysis using hierarchical, spatially explicit, Bayesian regression models. Ecol. Modell., 185, 105131, https://doi.org/10.1016/j.ecolmodel.2004.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., C. K. Wikle, and N. Cressie, 2000: Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Climate, 13, 39533968, https://doi.org/10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., R. F. Milliff, and C. K. Wikle, 2003: Bayesian hierarchical modeling of air-sea interaction. J. Geophys. Res., 108, 3104, https://doi.org/10.1029/2002JC001413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Besag, J., 1974: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc., 36B, 192236.

  • Brown, O. B., J. W. Brown, and R. H. Evans, 1985: Calibration of advanced very high resolution radiometer infrared observations. J. Geophys. Res., 90, 11 66711 668, https://doi.org/10.1029/JC090iC06p11667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, Y., Z. Li, J. D. Farrara, and P. Hung, 2009: Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Oceanic Technol., 26, 14151426, https://doi.org/10.1175/2009JTECHO592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Liu, C. Sun, and H. Wang, 2017: Comparison of TMI and AMSR-E sea surface temperatures with Argo near-surface temperatures over the global oceans. Acta Oceanol. Sin., 36, 5259, https://doi.org/10.1007/s13131-017-1040-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christakos, G., 2000: Modern Spatiotemporal Geostatistics. Studies in Mathematical Geology, Vol. 6, Oxford University Press, 288 pp.

  • Christakos, G., and M. L. Serre, 2000: BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos. Environ., 34, 33933406, https://doi.org/10.1016/S1352-2310(00)00080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christakos, G., M. L. Serre, and J. L. Kovitz, 2001: BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. J. Geophys. Res., 106, 97179731, https://doi.org/10.1029/2000JD900780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coops, N., and D. Culvenor, 2000: Utilizing local variance of simulated high spatial resolution imagery to predict spatial pattern of forest stands. Remote Sens. Environ., 71, 248260, https://doi.org/10.1016/S0034-4257(99)00068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., 1992: Statistics for spatial data. Terra Nova, 4, 613617, https://doi.org/10.1111/j.1365-3121.1992.tb00605.x.

  • Dong, S., S. T. Gille, J. Sprintall, and C. Gentemann, 2006: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111, C04002, https://doi.org/10.1029/2005JC002934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C., and GHRSST-PP Science Team, 2005: The GHRSST-PP product user guide. GDSv1 Revision 1.0, GHRSST-PP International Project Office, 86 pp., http://ghrsst-pp.metoffice.com/pages/documents/DocumentFiles/GHRSST-PP-Product-User-Guide-v1.1.pdf.

  • Donlon, C., P. Minnett, C. Gentemann, T. Nightingale, I. Barton, B. Ward, and M. Murray, 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc., 88, 11971213, https://doi.org/10.1175/BAMS-88-8-1197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Y. Yu, G. A. Wick, P. Schluessel, and R. W. Reynolds, 1994: Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99, 52195236, https://doi.org/10.1029/93JC03215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganzedo, U., A. Alvera-Azcárate, G. Esnaola, A. Ezcurra, and J. Sáenz, 2011: Reconstruction of sea surface temperature by means of DINEOF: A case study during the fishing season in the Bay of Biscay. Int. J. Remote Sens., 32, 933950, https://doi.org/10.1080/01431160903491420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfand, A. E., L. Zhu, and B. P. Carlin, 2001: On the change of support problem for spatio-temporal data. Biostatistics, 2, 3145, https://doi.org/10.1093/biostatistics/2.1.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., C. J. Donlon, A. Stuart-Menteth, and F. J. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, L., and H. Kawamura, 2003: SST availabilities of satellite infrared and microwave measurements. J. Oceanogr., 59, 201209, https://doi.org/10.1023/A:1025543305658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, L., and H. Kawamura, 2004: Merging satellite infrared and microwave SSTs: Methodology and evaluation of the new SST. J. Oceanogr., 60, 905912, https://doi.org/10.1007/s10872-005-5782-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, P., 2010: Study on Bayesian hierarchal model-based SST data fusion methods. Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010, C. R. Bostater et al., Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 7825), 78250O, https://doi.org/10.1117/12.864912.

    • Crossref
    • Export Citation
  • Guoxiong, W., and Coauthors, 2006: The key region affecting the short-term climate variations in China: The joining area of Asia and Indian-Pacific ocean. Adv. Earth Sci., 21, 11091118, https://doi.org/10.11867/j.issn.1001-8166.2006.11.1109.

    • Search Google Scholar
    • Export Citation
  • He, S., 2003: Applied Time Series Analysis. Peking University Press, 313.

  • Hooten, M. B., and C. K. Wikle, 2008: A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove. Environ. Ecol. Stat., 15, 5970, https://doi.org/10.1007/s10651-007-0040-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Høyer, J. L., I. Karagali, G. Dybkjær, and R. Tonboe, 2012: Multi sensor validation and error characteristics of Arctic satellite sea surface temperature observations. Remote Sens. Environ., 121, 335346, https://doi.org/10.1016/j.rse.2012.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, M. S., M. A. Saunders, and T. H. Guymer, 1996: Reducing cloud contamination in ATSR averaged sea surface temperature data. J. Atmos. Oceanic Technol., 13, 492, https://doi.org/10.1175/1520-0426(1996)013<0492:RCCIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzfuss, M., and N. Cressie, 2012: Bayesian hierarchical spatio‐temporal smoothing for very large datasets. Environmetrics, 23, 94107, https://doi.org/10.1002/env.1147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, A., Y. Bo, Y. Zhu, P. Guo, J. Bia, and Y. He, 2013: Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens. Environ., 135, 5263, https://doi.org/10.1016/j.rse.2013.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. He, 2014: Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST and chlorophyll reconstructions in 2003–2012. Remote Sens. Environ., 144, 98108, https://doi.org/10.1016/j.rse.2014.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., 1989: Global sea surface temperatures and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens., 10, 763769, https://doi.org/10.1080/01431168908903917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nechad, B., A. Alvera-Azcárate, K. Ruddick, and N. Greenwood, 2011: Reconstruction of MODIS total suspended matter time series maps by DINEOF and validation with autonomous platform data. Ocean Dyn., 61, 12051214, https://doi.org/10.1007/s10236-011-0425-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1, 7586, https://doi.org/10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shumway, R. H., and D. S. Stoffer, 2000: Time Series Analysis and Its Applications. Springer Texts in Statistics, Springer, 550 pp., https://doi.org/10.1007/978-1-4757-3261-0.

    • Crossref
    • Export Citation
  • Wang, Y.-Z., L. Guan, and L.-Q. Qu, 2010: Merging sea surface temperature observed by satellite infrared and microwave radiometers using Kalman filter. Period. Ocean Univ. China, 40 (12), 126130.

    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., 2002: A kernel-based spectral model for non-Gaussian spatio-temporal processes. Stat. Modell., 2, 299314, https://doi.org/10.1191/1471082x02st036oa.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., 2003: Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology, 84, 13821394, https://doi.org/10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., and M. B. Hooten, 2006: Hierarchical Bayesian spatio-temporal models for population spread. Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications, J. S. Clark and A. E. Gelfand, Eds., Oxford University Press, 145–169.

  • Wikle, C. K., L. M. Berliner, and N. Cressie, 1998: Hierarchical Bayesian space-time models. Environ. Ecol. Stat., 5, 117154, https://doi.org/10.1023/A:1009662704779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., R. F. Milliff, D. Nychka, and L. M. Berliner, 2001: Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. J. Amer. Stat. Assoc., 96, 382397, https://doi.org/10.1198/016214501753168109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., L. M. Berliner, and R. F. Milliff, 2003: Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions. Mon. Wea. Rev., 131, 10511062, https://doi.org/10.1175/1520-0493(2003)131<1051:HBATBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, C. E., and A. H. Strahler, 1987: The factor of scale in remote sensing. Remote Sens. Environ., 21, 311332, https://doi.org/10.1016/0034-4257(87)90015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., C. K. Wikle, and N. I. Fox, 2005: A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Amer. Stat. Assoc., 100, 11331144, https://doi.org/10.1198/016214505000000682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., 2006: Merging AVHRR and AMSR-E sea surface temperature data based on wavelet transform. Ocean University of China, 2054, http://kns.cnki.net/kns/brief/default_result.aspx.

  • Zheng, J. W., D. F. Xu, J. Wang, X. H. Xu, and M. Q. Xu, 2009: Merging multiple SST data with incremental 3D-variational assimilation. J. Mar. Sci., 27 (4), 2432, https://doi.org/10.3969/j.issn.1001-909X.2009.04.004.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., E. Kang, Y. Bo, and Q. Tang, 2015: A robust fixed rank kriging method for improving the spatial completeness and accuracy of satellite SST products. IEEE Trans. Geosci. Remote Sens., 53, 50215035, https://doi.org/10.1109/TGRS.2015.2416351.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 131 7
PDF Downloads 113 77 9

Fusion of Multisensor SSTs Based on the Spatiotemporal Hierarchical Bayesian Model

View More View Less
  • 1 School of Urban and Environmental Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Jiangsu, and Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, China
  • | 3 School of Urban and Environmental Sciences, Huaiyin Normal University, Jiangsu, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study focuses on merging MODIS-mapped SSTs with 4-km spatial resolution and AMSR-E optimally interpolated SSTs at 25-km resolution. A new data fusion method was developed—the Spatiotemporal Hierarchical Bayesian Model (STHBM). This method, which is implemented through the Markov chain Monte Carlo technique utilized to extract inferential results, is specified hierarchically by decomposing the SST spatiotemporal process into three subprocesses, that is, the spatial trend process, the seasonal cycle process, and the spatiotemporal random effect process. Spatial-scale transformation and spatiotemporal variation are introduced into the fusion model through the data model and model parameters, respectively, with suitably selected link functions. Compared with two modern spatiotemporal statistical methods—the Bayesian maximum entropy and the robust fixed rank kriging—STHBM has the following strength: it can simultaneously meet the expression of uncertainties from data and model, seamless scale transformation, and SST spatiotemporal process simulation. Utilizing multisensors’ complementation, merged data with complete spatial coverage, high resolution (4 km), and fine spatial pattern lying in MODIS SSTs can be obtained through STHBM. The merged data are assessed for local spatial structure, overall accuracy, and local accuracy. The evaluation results illustrate that STHBM can provide spatially complete SST fields with reasonably good data values and acceptable errors, and that the merged SSTs collect fine spatial patterns lying in MODIS SSTs with fine resolution. The accuracy of merged SSTs is between MODIS and AMSR-E SSTs. The contribution to the accuracy and the spatial pattern of the merged SSTs from the original MODIS SSTs is stronger than that of the original AMSR-E SSTs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanchen Bo, boyc@bnu.edu.cn

Abstract

This study focuses on merging MODIS-mapped SSTs with 4-km spatial resolution and AMSR-E optimally interpolated SSTs at 25-km resolution. A new data fusion method was developed—the Spatiotemporal Hierarchical Bayesian Model (STHBM). This method, which is implemented through the Markov chain Monte Carlo technique utilized to extract inferential results, is specified hierarchically by decomposing the SST spatiotemporal process into three subprocesses, that is, the spatial trend process, the seasonal cycle process, and the spatiotemporal random effect process. Spatial-scale transformation and spatiotemporal variation are introduced into the fusion model through the data model and model parameters, respectively, with suitably selected link functions. Compared with two modern spatiotemporal statistical methods—the Bayesian maximum entropy and the robust fixed rank kriging—STHBM has the following strength: it can simultaneously meet the expression of uncertainties from data and model, seamless scale transformation, and SST spatiotemporal process simulation. Utilizing multisensors’ complementation, merged data with complete spatial coverage, high resolution (4 km), and fine spatial pattern lying in MODIS SSTs can be obtained through STHBM. The merged data are assessed for local spatial structure, overall accuracy, and local accuracy. The evaluation results illustrate that STHBM can provide spatially complete SST fields with reasonably good data values and acceptable errors, and that the merged SSTs collect fine spatial patterns lying in MODIS SSTs with fine resolution. The accuracy of merged SSTs is between MODIS and AMSR-E SSTs. The contribution to the accuracy and the spatial pattern of the merged SSTs from the original MODIS SSTs is stronger than that of the original AMSR-E SSTs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanchen Bo, boyc@bnu.edu.cn
Save