Bimodality of Directional Distributions in Ocean Wave Spectra: A Comparison of Data-Adaptive Estimation Techniques

Abushet W. Simanesew Department of Mathematics, University of Oslo, Oslo, Norway

Search for other papers by Abushet W. Simanesew in
Current site
Google Scholar
PubMed
Close
,
Harald E. Krogstad Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

Search for other papers by Harald E. Krogstad in
Current site
Google Scholar
PubMed
Close
,
Karsten Trulsen Department of Mathematics, University of Oslo, Oslo, Norway

Search for other papers by Karsten Trulsen in
Current site
Google Scholar
PubMed
Close
, and
José Carlos Nieto Borge Department of Physics and Mathematics, Faculty of Sciences, University of Alcalá, Madrid, Spain

Search for other papers by José Carlos Nieto Borge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The properties of directional distributions in ocean wave spectra are studied, with an emphasis on sea states with bimodal directional distributions in the high-frequency tails of single-peaked wave systems. A peak-splitting tendency has been a challenge in the interpretation of results from some data-adaptive estimation methods. After a survey of the theory, mathematical and numerical explanations are presented regarding domains of uni- and bimodality for symmetric Burg and Shannon maximum entropy methods. The study finds that both the Burg and Shannon maximum entropy methods have a tendency to split peaks, and that the domains of uni- and bimodality for these two methods depend on the Fourier coefficients input into the algorithms. Comparisons of data-adaptive methods based on data collected near the Ekofisk oil field in the North Sea and from nonlinear wave simulations are presented. The maximum likelihood (ML) method, the iterative maximum likelihood (IML) method, and the Burg and Shannon maximum entropy methods are applied. A large fraction of the directional wave spectra from Ekofisk shows bimodal features for distributions above the spectral peak for all of the abovementioned methods. In particular, strong similarity in bimodal features between the iterative maximum likelihood and the Burg maximum entropy methods are found. In general, the bimodality is consistent with previous observations, and it seems to be associated with wave and spectral development owing to nonlinear wave–wave interactions rather than being associated with the peak-splitting tendency in the estimates from any of the algorithms. The bimodal directional distributions were sometimes persistent and sometimes formed or decayed within the order of hours.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karsten Trulsen, karstent@math.uio.no

Abstract

The properties of directional distributions in ocean wave spectra are studied, with an emphasis on sea states with bimodal directional distributions in the high-frequency tails of single-peaked wave systems. A peak-splitting tendency has been a challenge in the interpretation of results from some data-adaptive estimation methods. After a survey of the theory, mathematical and numerical explanations are presented regarding domains of uni- and bimodality for symmetric Burg and Shannon maximum entropy methods. The study finds that both the Burg and Shannon maximum entropy methods have a tendency to split peaks, and that the domains of uni- and bimodality for these two methods depend on the Fourier coefficients input into the algorithms. Comparisons of data-adaptive methods based on data collected near the Ekofisk oil field in the North Sea and from nonlinear wave simulations are presented. The maximum likelihood (ML) method, the iterative maximum likelihood (IML) method, and the Burg and Shannon maximum entropy methods are applied. A large fraction of the directional wave spectra from Ekofisk shows bimodal features for distributions above the spectral peak for all of the abovementioned methods. In particular, strong similarity in bimodal features between the iterative maximum likelihood and the Burg maximum entropy methods are found. In general, the bimodality is consistent with previous observations, and it seems to be associated with wave and spectral development owing to nonlinear wave–wave interactions rather than being associated with the peak-splitting tendency in the estimates from any of the algorithms. The bimodal directional distributions were sometimes persistent and sometimes formed or decayed within the order of hours.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karsten Trulsen, karstent@math.uio.no
Save
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24, 15501571, https://doi.org/10.1175/1520-0485(1994)024<1550:MSDITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, M., and C. Teisson, 1994: Laboratory comparison of directional wave measurement systems and analysis techniques. Coastal Engineering 1994: Proceedings of the Twenty-Fourth International Conference, B. L. Edge, Ed., Vol. 1, American Society of Civil Engineers, 42–56, https://doi.org/10.1061/9780784400890.004.

    • Crossref
    • Export Citation
  • Berens, P., 2009: CircStat: A Matlab toolbox for circular statistics. J. Stat. Software, 31, 121, https://doi.org/10.18637/jss.v031.i10.

  • Burg, J. P., 1975: Maximum entropy spectral analysis. Ph.D. thesis, Stanford University, 123 pp.

  • Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57, 14081418, https://doi.org/10.1109/PROC.1969.7278.

  • Davis, R. E., and L. A. Regier, 1977: Methods for estimating directional wave spectra from multi-element arrays. J. Mar. Res., 35, 453477.

    • Search Google Scholar
    • Export Citation
  • Dommermuth, D. G., and D. K. P. Yue, 1987: A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech., 184, 267288, https://doi.org/10.1017/S002211208700288X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and A. K. Magnusson, 1996: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26, 19011914, https://doi.org/10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. Babanin, E. Sanina, and D. Chalikov, 2015: A comparison of methods for estimating directional spectra of surface waves. J. Geophys. Res. Oceans, 120, 50405053, https://doi.org/10.1002/2015JC010808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dysthe, K. B., 1979: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. Roy. Soc. London, 369A, 105114, https://doi.org/10.1098/rspa.1979.0154.

    • Search Google Scholar
    • Export Citation
  • Dysthe, K. B., K. Trulsen, H. E. Krogstad, and H. Socquet-Juglard, 2003: Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech., 478, 110, https://doi.org/10.1017/S0022112002002616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28, 495512, https://doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., and T. Van der Vlugt, 1999: Estimating bimodal frequency-direction spectra from surface buoy data recorded during tropical cyclones. J. Offshore Mech. Arctic Eng., 121, 172180, https://doi.org/10.1115/1.2829562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, N. I., 1995: Statistical Analysis of Circular Data. Cambridge University Press, 277 pp., https://doi.org/10.1002/bimj.4710380307.

    • Crossref
    • Export Citation
  • Glad, I. K., and H. E. Krogstad, 1992: The maximum-likelihood property of estimators of wave parameters from heave, pitch, and roll buoys. J. Atmos. Oceanic Technol., 9, 169173, https://doi.org/10.1175/1520-0426(1992)009<0169:TMLPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, N., 1997: Analysis of the directional wave spectrum from field data. Advances in Coastal and Ocean Engineering, P. L.-F. Liu, Ed., Vol. 3, World Scientific, 103–143.

    • Crossref
    • Export Citation
  • Hashimoto, N., and K. Kobune, 1986: Estimation of directional spectra from the maximum entropy principle. Proceedings of the Fifth International Offshore Mechanics and Arctic Engineering Symposium, J. S. Chung et al., Eds., Vol. 1, American Society of Mechanical Engineers, 8085.

  • Hasselmann, D. E., M. Dunckel, and J. E. Edwing, 1980: Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10, 12641280, https://doi.org/10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2001: Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr., 31, 13461360, https://doi.org/10.1175/1520-0485(2001)031<1346:DDAMSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr., 30, 27682787, https://doi.org/10.1175/1520-0485(2001)031<2768:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isobe, M., K. Kondo, and K. Horikawa, 1984: Extension of MLM for estimating directional wave spectrum. Proc. Symp. on Description and Modelling of Directional Seas, Kongens Lyngby, Denmark, Danish Hydraulic Institute and Danish Maritime Institute, A-6, 15 pp.

  • Kahma, K., D. Hauser, H. E. Krogstad, S. Lehner, J. A. J. Monbaliu, and L. R. Wyatt, 2005: Measuring and analysing the directional spectra of ocean waves. EU COST Action 714, EUR 21367, EU Publications Office, 465 pp.

  • Kay, S. M., 1988: Modern Spectral Estimation: Theory and Application. Pearson Education, 543 pp.

  • Krogstad, H. E., 1988: Maximum likelihood estimation of ocean wave spectra from general arrays of wave gauges. Model. Identif. Control, 9, 8197, https://doi.org/10.4173/mic.1988.2.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., 2012: Analysis of ocean wave measurements—Some recent studies. Marine Technology and Engineering: CENTEC Anniversary Book, C. G. Soares et al., Eds., Vol. 1, CRC Press, 109–124.

  • Krogstad, H. E., and K. Trulsen, 2010: Interpretations and observations of ocean wave spectra. Ocean Dyn., 60, 973991, https://doi.org/10.1007/s10236-010-0293-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., R. L. Gordon, and M. C. Miller, 1988: High-resolution directional wave spectra from horizontally mounted acoustic Doppler current meters. J. Atmos. Oceanic Technol., 5, 340352, https://doi.org/10.1175/1520-0426(1988)005<0340:HRDWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., M. A. Donelan, and A. K. Magnusson, 2006: Wavelet and local directional analysis of ocean waves. Int. J. Offshore Polar Eng., 16, 97103.

    • Search Google Scholar
    • Export Citation
  • Kuik, A. J., G. P. van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leckler, F., F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco, and V. Dulov, 2015: Analysis and interpretation of frequency–wavenumber spectra of young wind waves. J. Phys. Oceanogr., 45, 24842496, https://doi.org/10.1175/JPO-D-14-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, E. Y., and C. C. Mei, 1985: A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech., 150, 395416, https://doi.org/10.1017/S0022112085000180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, E. Y., and C. C. Mei, 1987: Slow evolution of nonlinear deep water waves in two horizontal directions: A numerical study. Wave Motion, 9, 245259, https://doi.org/10.1016/0165-2125(87)90014-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112, C05001, https://doi.org/10.1029/2006JC003835.

    • Search Google Scholar
    • Export Citation
  • Long, R. B., and K. Hasselmann, 1979: A variational technique for extracting directional spectra from multi-component wave data. J. Phys. Oceanogr., 9, 373381, https://doi.org/10.1175/1520-0485(1979)009<0373:AVTFED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1976: On the nonlinear transfer of energy in the peak of a gravity-wave spectrum. II. Proc. Roy. Soc. London, 348A, 467483, https://doi.org/10.1098/rspa.1976.0050.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra: Proceedings of a Conference, Prentice-Hall, 111–136.

  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16, 20522060, https://doi.org/10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, U. B., and H. E. Krogstad, 2004: Analysis of data from the Ekofisk laser array. Unpublished Fugro Global Environmental and Ocean Sciences Tech. Rep., 46 pp.

  • Mardia, K. V., 1972: Statistics of Directional Data. Academic Press, 357 pp.

  • Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Onkusu, T. Honda, and T. Rukiiski, 1975: Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr., 5, 750760, https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morland, L. C., 1996: Oblique wind waves generated by the instability of wind blowing over water. J. Fluid Mech., 316, 163172, https://doi.org/10.1017/S0022112096000481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 2005: Ocean Waves: The Stochastic Approach. Cambridge Ocean Technology Series, Cambridge University Press, 332 pp.

  • Oltman-Shay, J., and R. T. Guza, 1984: A data-adaptive ocean wave directional-spectrum estimator for pitch and roll type measurements. J. Phys. Oceanogr., 14, 18001810, https://doi.org/10.1175/1520-0485(1984)014<1800:ADAOWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawka, S. S., 1983: Island shadows in wave directional spectra. J. Geophys. Res., 88, 25792591, https://doi.org/10.1029/JC088iC04p02579.

  • Phillips, O. M., 1960: On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech., 9, 193217, https://doi.org/10.1017/S0022112060001043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simanesew, A., H. E. Krogstad, K. Trulsen, and J. C. Nieto Borge, 2016: Development of frequency-dependent ocean wave directional distributions. Appl. Ocean Res., 59, 304312, https://doi.org/10.1016/j.apor.2016.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taklo, T. M. A., K. Trulsen, O. Gramstad, H. E. Krogstad, and A. Jensen, 2015: Measurement of the dispersion relation for random surface gravity waves. J. Fluid Mech., 766, 326336, https://doi.org/10.1017/jfm.2015.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., M. Onorato, E. M. Bitner-Gregersen, and J. Monbaliu, 2010: Development of a bimodal structure in ocean wave spectra. J. Geophys. Res., 115, C03006, https://doi.org/10.1029/2009JC005495.

    • Crossref
    • Export Citation
  • Trulsen, K., and K. B. Dysthe, 1996: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, 281289, https://doi.org/10.1016/S0165-2125(96)00020-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trulsen, K., I. Kliakhandler, K. B. Dysthe, and M. G. Velarde, 2000: On weakly nonlinear modulation of waves on deep water. Phys. Fluids, 12, 24322437, https://doi.org/10.1063/1.1287856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. W., and P. A. Hwang, 2000: Transient evolution of the wave bimodal directional distribution. Coastal Engineering 2000, B. L. Edge, Ed., American Society of Civil Engineers, 1254–1267, https://doi.org/10.1061/40549(276)97.

    • Crossref
    • Export Citation
  • Wang, D. W., and P. A. Hwang, 2001: Evolution of the bimodal directional distribution of ocean waves. J. Phys. Oceanogr., 31, 12001221, https://doi.org/10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. W., and P. A. Hwang, 2003: Higher Fourier harmonics of the directional distribution of an equilibrium wave field under steady wind forcing. J. Atmos. Oceanic Technol., 20, 217227, https://doi.org/10.1175/1520-0426(2003)020<0217:HFHOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2010: The form of the asymptotic depth-limited wind-wave spectrum: Part III— Directional spreading. Coastal Eng., 57, 3040, https://doi.org/10.1016/j.coastaleng.2009.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., L. A. Verhagen, and M. L. Banner, 1995: A note on the bimodal directional spreading of fetch-limited wind waves. J. Geophys. Res., 100, 773778, https://doi.org/10.1029/94JC02218.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 501 132 16
PDF Downloads 360 87 7