Performance Evaluation of On-Orbit Calibration of SNPP VIIRS Reflective Solar Bands via Intersensor Comparison with Aqua MODIS

Mike Chu NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Mike Chu in
Current site
Google Scholar
PubMed
Close
,
Junqiang Sun NOAA/NESDIS/Center for Satellite Applications and Research, College Park, and Global Science and Technology, Greenbelt, Maryland

Search for other papers by Junqiang Sun in
Current site
Google Scholar
PubMed
Close
, and
Menghua Wang NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Menghua Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An intersensor comparison is carried out to evaluate the radiometric performance of the reflective solar bands (RSBs) of the first Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite. Two versions of sensor data records (SDRs) for moderate-resolution RSBs M1–M8 (410–1238 nm)—one version from the NOAA Ocean Color (OC) Team and the operational version from the Interface Data Processing Segment (IDPS)—are compared against the well-calibrated Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. This comparison fully exploits the moderate resolution of the sensors and a precise simultaneous nadir overpass (SNO) analysis in a “nadir only” approach to achieve a precision better than 1%. The key issues found to impact the SNO analysis are 1) an underlying bias beyond the 80-km spatial scale, 2) a scene-based sporadic variability of about 2% affecting the sample size selection criteria, and 3) large relative deviations at low radiances. It is shown that the OC SDRs achieve significantly better agreement with Aqua MODIS, such as smaller temporal variation, improved agreement in the early mission, and no observable long-term drift. The lone exception is the downward drift of about 1% in the Aqua MODIS band 8 (412 nm) versus SNPP VIIRS band M1 time series that possibly started in late 2013, which is ultimately attributed to errors in Aqua MODIS band 8. Finally, the long-term drift in the IDPS SDRs further illustrates the consequence of the worsening bias within the standard RSB calibration that will infect any versions of the VIIRS SDRs not mitigated for this error.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mike Chu, mike.chu@noaa.gov

Abstract

An intersensor comparison is carried out to evaluate the radiometric performance of the reflective solar bands (RSBs) of the first Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite. Two versions of sensor data records (SDRs) for moderate-resolution RSBs M1–M8 (410–1238 nm)—one version from the NOAA Ocean Color (OC) Team and the operational version from the Interface Data Processing Segment (IDPS)—are compared against the well-calibrated Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. This comparison fully exploits the moderate resolution of the sensors and a precise simultaneous nadir overpass (SNO) analysis in a “nadir only” approach to achieve a precision better than 1%. The key issues found to impact the SNO analysis are 1) an underlying bias beyond the 80-km spatial scale, 2) a scene-based sporadic variability of about 2% affecting the sample size selection criteria, and 3) large relative deviations at low radiances. It is shown that the OC SDRs achieve significantly better agreement with Aqua MODIS, such as smaller temporal variation, improved agreement in the early mission, and no observable long-term drift. The lone exception is the downward drift of about 1% in the Aqua MODIS band 8 (412 nm) versus SNPP VIIRS band M1 time series that possibly started in late 2013, which is ultimately attributed to errors in Aqua MODIS band 8. Finally, the long-term drift in the IDPS SDRs further illustrates the consequence of the worsening bias within the standard RSB calibration that will infect any versions of the VIIRS SDRs not mitigated for this error.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mike Chu, mike.chu@noaa.gov
Save
  • Angal, A., X. J. Xiong, J. Sun, and X. Geng, 2015: On-orbit noise characterization of MODIS reflective solar bands. J. Appl. Remote Sens., 9, 094092, https://doi.org/10.1117/1.JRS.9.094092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, R., D. R. Doelling, A. Wu, X. Xiong, B. R. Scarino, C. O. Haney, and A. Gopalan, 2014: Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens., 6, 28092826, https://doi.org/10.3390/rs6042809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., and A. K. Heidinger, 2002: Inter-comparison of the longwave infrared channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections. Earth Observing Systems VII, W. L. Barnes, Ed., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 4814), 306–316, https://doi.org/10.1117/12.451690.

    • Crossref
    • Export Citation
  • Cao, C., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542, https://doi.org/10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., J. Xiong, S. Blonski, Q. Liu, S. Uprety, X. Shao, Y. Bai, and F. Weng, 2013: Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos., 118, 11 66411 678, https://doi.org/10.1002/2013JD020418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., F. Deluccia, X. Xiong, R. Wolfe, and F. Weng, 2014: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, https://doi.org/10.1109/TGRS.2013.2247768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, T. J., J. Sun, B. Zhang, Z. Wang, C. Cao, F. Weng, and M. Wang, 2017: Suomi-NPP VIIRS initial reprocessing improvements and validations in the reflective solar bands (RSBS). Earth Observing Systems XXII, J. J. Butler, X. Xiong, and X. Gu Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 10402), 104021V, https://doi.org/10.1117/12.2274081.

    • Crossref
    • Export Citation
  • Chu, M., J. Sun, and M. Wang, 2016: Radiometric evaluation of the SNPP VIIRS reflective solar band sensor data records via inter-sensor comparison with Aqua MODIS. Earth Observing Systems XXI, J. J. Butler, X. Xiong, and X. Gu Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9972), 99721R, https://doi.org/10.1117/12.2236942.

    • Crossref
    • Export Citation
  • Doelling, D. R., C. Lukashin, P. Minnis, B. Scarino, and D. Morstad, 2012: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. IEEE Geosci. Remote Sens. Lett., 9, 119123, https://doi.org/10.1109/LGRS.2011.2161751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., and M. Wang, 1994: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt., 33, 443452, https://doi.org/10.1364/AO.33.000443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectroradiometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, 4702, https://doi.org/10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • NOAA National Calibration Center, 2016: SNPP SNOs with other satellites. Accessed July 2016, http://ncc.nesdis.noaa.gov/VIIRS/SNOPredictions/index.php.

  • NOAA Products Validation System, 2016: NOAA-19 sounding products. Subset used: 1200:00 UTC 14 January 2016, accessed 29 October 2016. http://www.ospo.noaa.gov/Products/atmosphere/soundings/index.html.

  • NOAA/STAR VIIRS SDR Team, 2013: Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data records (SDR) algorithm theoretical basis document (ATBD). Rev. C, NOAA Doc. E/RA-00003, 161 pp., http://ncc.nesdis.noaa.gov/documents/documentation/ATBD-VIIRS-RadiometricCal_20131212.pdf.

  • Scarino, B. R., 2016: Spectral band adjustment factor. Accessed July 2016, http://angler.larc.nasa.gov/SBAF.

  • Scarino, B. R., D. R. Doelling, P. Minnis, A. Gopalan, T. Chee, R. Bhatt, C. Lukashin, and C. Haney, 2016: A web-based tool for calculating spectral band difference adjustment factors derived from SCIAMACHY hyperspectral data. IEEE Trans. Geosci. Remote Sens., 54, 25292542, https://doi.org/10.1109/TGRS.2015.2502904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2014: Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using solar diffuser stability monitor. Appl. Opt., 53, 85718584, https://doi.org/10.1364/AO.53.008571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2015a: On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen. Appl. Opt., 54, 236252, https://doi.org/10.1364/AO.54.000236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2015b: On-orbit calibration of the Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser. Appl. Opt., 54, 72107223, https://doi.org/10.1364/AO.54.007210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2015c: Radiometric calibration of the Visible Infrared Imaging Radiometer Suite reflective solar bands with robust characterizations and hybrid calibration coefficients. Appl. Opt., 54, 93319342, https://doi.org/10.1364/AO.54.009331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2016: VIIRS reflective solar bands calibration progress and its impact on ocean color products. Remote Sens., 8, 194, https://doi.org/10.3390/rs8030194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and M. Wang, 2017: Reflective solar bands calibration improvements and look up tables for SNPP VIIRS operational mission-long SDR reprocessing. Earth Observing Systems XXII, J. J. Butler, X. Xiong, and X. Gu Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 10402), 104021W, https://doi.org/10.1117/12.2271636.

    • Crossref
    • Export Citation
  • Sun, J., A. Angal, X. Xiong, H. Chen, X. Geng, A. Wu, T. Choi, and M. Chu, 2012: MODIS reflective solar bands calibration improvements in Collection 6. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, H. Shimoda et al., Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 8528), 85280N, https://doi.org/10.1117/12.979733.

    • Crossref
    • Export Citation
  • Sun, J., X. Xiong, A. Angal, H. Chen, A. Wu, and X. Geng, 2014: Time-dependent response versus scan angle for MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 52, 31593174, https://doi.org/10.1109/TGRS.2013.2271448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., M. Chu, and M. Wang, 2016: Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function. Appl. Opt., 55, 60016016, https://doi.org/10.1364/AO.55.006001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uprety, S., and C. Cao, 2015: Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites. Remote Sens. Environ., 166, 106115, https://doi.org/10.1016/j.rse.2015.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uprety, S., C. Cao, X. Xiong, S. Blonski, A. Wu, and X. Shao, 2013: Radiometric intercomparison between Suomi-NPP VIIRS and Aqua MODIS reflective solar bands using simultaneous nadir overpass in the low latitudes. J. Atmos. Oceanic Technol., 30, 27202736, https://doi.org/10.1175/JTECH-D-13-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uprety, S., S. Blonski, and C. Cao, 2016: On-orbit radiometric performance characterization of S-NPP VIIRS reflective solar bands. Earth Observing Missions and Sensor: Development, Implementation, and Characterization IV, X. J. Xiong, S. A. Kuriakose, and T. Kimura, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9881), 98811H, https://doi.org/10.1117/12.2223788.

    • Crossref
    • Export Citation
  • Vallado, D. A., P. Crawford, R. Hujsak, and T. S. Kelso, 2006: Revisiting Spacetrack Report #3. AIAA/AAS Astrodynamics Specialist Conf. and Exhibit, Keystone, CO, AIAA, AIAA 2006-6753, https://doi.org/10.2514/6.2006-6753.

    • Crossref
    • Export Citation
  • Wang, M., 2007: Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations. Appl. Opt., 46, 15351547, https://doi.org/10.1364/AO.46.001535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., 2016: Rayleigh radiance computations for satellite remote sensing: Accounting for the effect of sensor spectral response function. Opt. Express, 24, 12 41412 429, https://doi.org/10.1364/OE.24.012414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and W. Shi, 2007: The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express, 15, 15 72215 733, https://doi.org/10.1364/OE.15.015722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, 2013: Impacts of VIIRS SDR performance on ocean color products. J. Geophys. Res. Atmos., 118, 10 34710 360, https://doi.org/10.1002/jgrd.50793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and Coauthors, 2014: Evaluation of VIIRS ocean color products. Ocean Remote Sensing and Monitoring from Space, R. J. Frouin, D. Pan, and H. Murakami, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9261), 92610E, https://doi.org/10.1117/12.2069251.

    • Crossref
    • Export Citation
  • Wang, M., W. Shi, L. Jiang, X. Liu, and K. Voss, 2015a: Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing. Opt. Express, 23, 14 44614 460, https://doi.org/10.1364/OE.23.014446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and Coauthors, 2015b: VIIRS ocean color research and applications. 2015 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 29112914, https://doi.org/10.1109/IGARSS.2015.7326424.

    • Crossref
    • Export Citation
  • Wolf, R. E., S. Devadiga, G. Ye, E. J. Masuoka, and R. J. Schweiss, 2010: Evaluation of the VIIRS land algorithms at Land PEATE. 2010 IEEE International and Remote Sensing Symposium: Proceedings, IEEE, 304307, https://doi.org/10.1109/IGARSS.2010.5652831.

    • Crossref
    • Export Citation
  • Wu, A., X. Xiong, C. Cao, and K. Chiang, 2016: Assessment of SNPP VIIRS VIS/NIR radiometric calibration stability using Aqua MODIS and invariant surface targets. IEEE Trans. Geosci. Remote Sens., 54, 29182924, https://doi.org/10.1109/TGRS.2015.2508379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiong, X., J. Sun, X. Xie, W. Barnes, and V. Salomonson, 2010: On-orbit calibration and performance of Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 48, 535546, https://doi.org/10.1109/TGRS.2009.2024307.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 157 7
PDF Downloads 263 89 2