Accounting for Gravitational Attraction and Loading Effects from Land Ice on Absolute Sea Level

Rui M. Ponte Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Rui M. Ponte in
Current site
Google Scholar
PubMed
Close
,
Katherine J. Quinn Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Katherine J. Quinn in
Current site
Google Scholar
PubMed
Close
, and
Christopher G. Piecuch Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Christopher G. Piecuch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gravitational attraction and loading (GAL) effects associated with ongoing long-term changes in land ice are expected to cause spatially varying trends in absolute sea level ζ, as measured by satellite altimeters. The largest spatial gradients in ζ trends, predicted from solving the sea level equation using GRACE retrievals of mass distribution over land for the period 2005–15, occur near Greenland and West Antarctica, consistent with a strong local land ice loss. Misinterpreting the estimated static GAL trends in ζ as dynamic pressure gradients can lead to substantial errors in large-scale geostrophic transports across the Southern Ocean and the subpolar North Atlantic over the analyzed decade. South of Greenland, where altimeter sea level and hydrography (Argo) data coverage is good, the residual ζ minus steric height trends are similar in magnitude and sign to the gravitationally based predictions. In addition, estimated GAL-related trends are as large—if not larger than—other factors, such as deep steric height, dynamic bottom pressure, and glacial isostatic rebound. Thus, accounting for static GAL effects on ζ records, which are commonly neglected in oceanographic studies, seems important for a quantitative interpretation of the observed ζ trends.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rui M. Ponte, rponte@aer.com

Abstract

Gravitational attraction and loading (GAL) effects associated with ongoing long-term changes in land ice are expected to cause spatially varying trends in absolute sea level ζ, as measured by satellite altimeters. The largest spatial gradients in ζ trends, predicted from solving the sea level equation using GRACE retrievals of mass distribution over land for the period 2005–15, occur near Greenland and West Antarctica, consistent with a strong local land ice loss. Misinterpreting the estimated static GAL trends in ζ as dynamic pressure gradients can lead to substantial errors in large-scale geostrophic transports across the Southern Ocean and the subpolar North Atlantic over the analyzed decade. South of Greenland, where altimeter sea level and hydrography (Argo) data coverage is good, the residual ζ minus steric height trends are similar in magnitude and sign to the gravitationally based predictions. In addition, estimated GAL-related trends are as large—if not larger than—other factors, such as deep steric height, dynamic bottom pressure, and glacial isostatic rebound. Thus, accounting for static GAL effects on ζ records, which are commonly neglected in oceanographic studies, seems important for a quantitative interpretation of the observed ζ trends.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rui M. Ponte, rponte@aer.com
Save
  • Adhikari, S., and E. R. Ivins, 2016: Climate-driven polar motion: 2003–2015. Sci. Adv., 2, e1501693, https://doi.org/10.1126/sciadv.1501693.

  • Chelton, D. B., J. C. Ries, B. J. Haines, L.-L. Fu, and P. S. Callahan, 2001: Satellite altimetry. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, L.-L. Fu and A. Cazenave, Eds., International Geophysics Series, Vol. 69, Academic Press, 1–131, https://doi.org/10.1016/S0074-6142(01)80146-7.

    • Crossref
    • Export Citation
  • Conrad, C. P., and B. H. Hager, 1997: Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys. Res. Lett., 24, 15031506, https://doi.org/10.1029/97GL01338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., S. G. Purkey, E. L. McDonagh, G. C. Johnson, and B. A. King, 2016: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43, 10 35610 365, https://doi.org/10.1002/2016GL070413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobslaw, H., F. Flechtner, I. Bergmann-Wolf, C. Dahle, R. Dill, S. Esselborn, I. Sasgen, and M. Thomas, 2013: Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J. Geophys. Res. Oceans, 118, 37043711, https://doi.org/10.1002/jgrc.20271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, W. E., and J. A. Clark, 1976: On postglacial sea level. Geophys. J. Int., 46, 647667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flechtner, F., H. Dobslaw, and E. Fagiolini, 2015: AOD1B product description document for product release 05 (Rev. 4.3). GeoForschungsZentrum Potsdam GRACE Doc. 327-750 (GR-GRZ-AOD-0001), 34 pp., https://www.gfz-potsdam.de/fileadmin/gfz/sec12/pdf/GRACE/AOD1B/AOD1B_20150423.pdf.

  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. California Institute of Technology Jet Propulsion Laboratory Tech. Rep., 10 pp., ftp://ecco.jpl.nasa.gov/Version4/Release3/.

  • Gill, A., and P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, https://doi.org/10.1016/0011-7471(73)90049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559, https://doi.org/10.1126/science.1094917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsen, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans, 120, 257267, https://doi.org/10.1002/2014JC010470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., J.-Y. Guo, C. K. Shum, J. Wan, J. Duan, H. S. Fok, and C.-Y. Kuo, 2013: On the accuracy of glacial isostatic adjustment models for geodetic observations to estimate Arctic Ocean sea-level change. Terr. Atmos. Oceanic Sci., 24, 471490, https://doi.org/10.3319/TAO.2012.08.28.01(TibXS).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, L., R. Rietbroek, and J. Kusche, 2013: Land water contribution to sea level from GRACE and Jason-1 measurements. J. Geophys. Res. Oceans, 118, 212226, https://doi.org/10.1002/jgrc.20058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, R. A., J. X. Mitrovica, and G. A. Milne, 2005: On post-glacial sea level—II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int., 161, 679706, https://doi.org/10.1111/j.1365-246X.2005.02553.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., J. X. Mitrovica, S. M. Griffies, J. Yin, C. C. Hay, and R. J. Stouffer, 2010: The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change, 103, 619625, https://doi.org/10.1007/s10584-010-9935-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., and R. Morrow, 2001: Ocean currents and eddies. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, L.-L. Fu and A. Cazenave, Eds., International Geophysics Series, Vol. 69, Academic Press, 171–215, https://doi.org/10.1016/S0074-6142(01)80148-0.

    • Crossref
    • Export Citation
  • Leuliette, E. W., and R. S. Nerem, 2016: Contributions of Greenland and Antarctica to global and regional sea level change. Oceanography, 29 (4), 154159, https://doi.org/10.5670/oceanog.2016.107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., and W. Peltier, 1991: On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res., 96, 20 05320 071, https://doi.org/10.1029/91JB01284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., M. Tamisiea, J. Davis, and G. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 10261029, https://doi.org/10.1038/35059054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2001: Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Sea Level Rise: History and Consequences, B. C. Douglas, J. S. Kearney, and S. P. Leatherman, Eds., International Geophysics Series, Vol. 75, Academic Press, 65–95, https://doi.org/10.1016/S0074-6142(01)80007-3.

    • Crossref
    • Export Citation
  • Ponte, R. M., and S. V. Vinogradov, 2007: Effects of stratification on the large-scale ocean response to barometric pressure. J. Phys. Oceanogr., 37, 245258, https://doi.org/10.1175/JPO3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., S. B. Luthcke, and T. van Dam, 2013: Monthly crustal loading corrections for satellite altimetry. J. Atmos. Oceanic Technol., 30, 9991005, https://doi.org/10.1175/JTECH-D-12-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rietbroek, R., S.-E. Brunnabend, J. Kusche, and J. Schröter, 2012: Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn., 59–60, 7281, https://doi.org/10.1016/j.jog.2011.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spada, G., and G. Galassi, 2016: Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints. Global Planet. Change, 143, 3449, https://doi.org/10.1016/j.gloplacha.2016.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, P., and D. Roemmich, 2011: Decadal steric and sea surface height changes in the Southern Hemisphere. Geophys. Res. Lett., 38, L08604, https://doi.org/10.1029/2011GL046802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamisiea, M. E., E. M. Hill, R. M. Ponte, J. L. Davis, I. Velicogna, and N. T. Vinogradova, 2010: Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res., 115, C0700, https://doi.org/10.1029/2009JC005687.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., R. M. Ponte, M. Tamisiea, J. Davis, and E. Hill, 2010: Effects of self-attraction and loading on annual variations of ocean bottom pressure. J. Geophys. Res., 115, C06025, https://doi.org/10.1029/2009JC005783.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., R. M. Ponte, K. J. Quinn, M. E. Tamisiea, J.-M. Campin, and J. L. Davis, 2015: Dynamic adjustment of the ocean circulation to self-attraction and loading effects. J. Phys. Oceanogr., 45, 678689, https://doi.org/10.1175/JPO-D-14-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, F. W. Landerer, and R. Lumpkin, 2017: Decade-long deep-ocean warming detected in the subtropical South Pacific. Geophys. Res. Lett., 44, 927936, https://doi.org/10.1002/2016GL071661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, M. M., D. N. Wiese, D.-N. Yuan, C. Boening, and F. W. Landerer, 2015: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth, 120, 26482671, https://doi.org/10.1002/2014JB011547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, C. S., N. J. White, J. A. Church, M. A. King, R. J. Burgette, and B. Legresy, 2015: Unabated global mean sea-level rise over the satellite altimeter era. Nat. Climate Change, 5, 565568, https://doi.org/10.1038/nclimate2635.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 161 8
PDF Downloads 223 74 6