Observing Finescale Oceanic Velocity Structure with an Autonomous Nortek Acoustic Doppler Current Profiler

Andrey Y. Shcherbina Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Andrey Y. Shcherbina in
Current site
Google Scholar
PubMed
Close
,
Eric A. D’Asaro Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Eric A. D’Asaro in
Current site
Google Scholar
PubMed
Close
, and
Sven Nylund Nortek AS, Rud, Norway

Search for other papers by Sven Nylund in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the instrumentation and techniques for long-term targeted observation of the centimeter-scale velocity structure within the oceanic surface boundary layer, made possible by the recent developments in capabilities of autonomous platforms and self-contained pulse-coherent acoustic Doppler current profilers (ADCPs). Particular attention is paid to the algorithms of ambiguity resolution (“unwrapping”) of pulse-coherent Doppler velocity measurements. The techniques are demonstrated using the new Nortek Signature1000 ADCP mounted on a Lagrangian float, a combination shown to be capable of observing ocean turbulence in a number of recent studies. Statistical uncertainty of the measured velocities in relation to the ADCP setup is also evaluated. Described techniques and analyses should be broadly applicable to other autonomous and towed applications of pulse-coherent ADCPs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrey Y. Shcherbina, ashcherbina@apl.washington.edu

Abstract

This paper describes the instrumentation and techniques for long-term targeted observation of the centimeter-scale velocity structure within the oceanic surface boundary layer, made possible by the recent developments in capabilities of autonomous platforms and self-contained pulse-coherent acoustic Doppler current profilers (ADCPs). Particular attention is paid to the algorithms of ambiguity resolution (“unwrapping”) of pulse-coherent Doppler velocity measurements. The techniques are demonstrated using the new Nortek Signature1000 ADCP mounted on a Lagrangian float, a combination shown to be capable of observing ocean turbulence in a number of recent studies. Statistical uncertainty of the measured velocities in relation to the ADCP setup is also evaluated. Described techniques and analyses should be broadly applicable to other autonomous and towed applications of pulse-coherent ADCPs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrey Y. Shcherbina, ashcherbina@apl.washington.edu
Save
  • Alkire, M. B., and Coauthors, 2012: Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3 , and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep-Sea Res. I, 64, 157174, https://doi.org/10.1016/j.dsr.2012.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arevallilo Herráez, M., D. R. Burton, M. J. Lalor, and M. A. Gdeisat, 2002: Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt., 41, 74377444, https://doi.org/10.1364/AO.41.007437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brumley, B. H., R. G. Cabrera, K. L. Deines, and E. A. Terray, 1991: Performance of a broadband acoustic Doppler current profiler. IEEE J. Oceanic Eng., 16, 402407, https://doi.org/10.1109/48.90905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabrera, R., K. Deines, B. Brumley, and E. Terray, 1987: Development of a practical coherent acoustic Doppler current profiler. Proceedings of OCEANS’87: The Ocean—“An International Workplace,” Vol. 1, IEEE, 93–97, https://doi.org/10.1109/OCEANS.1987.1160903.

    • Crossref
    • Export Citation
  • Chen, C. W., and H. A. Zebker, 2000: Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Amer., 17A, 401414, https://doi.org/10.1364/JOSAA.17.000401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C. W., and H. A. Zebker, 2001: Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Amer., 18A, 338351, https://doi.org/10.1364/JOSAA.18.000338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, https://doi.org/10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2008: A diapycnal mixing budget on the Oregon shelf. Limnol. Oceanogr., 53, 21372150, https://doi.org/10.4319/lo.2008.53.5_part_2.2137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and C. McNeil, 2008: Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst., 74, 722736, https://doi.org/10.1016/j.jmarsys.2008.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, J., L. Zedel, and A. E. Hay, 2012: On the distribution of velocity measurements from pulse-to-pulse coherent Doppler sonar. IEEE J. Oceanic Eng., 37, 613625, https://doi.org/10.1109/JOE.2012.2204839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, D., L. Washburn, C. Ohlmann, and C. Gotschalk, 2015: Improved methods to calculate depth-resolved velocities from glider-mounted ADCPs. 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, IEEE, 10 pp., https://doi.org/10.1109/CWTM.2015.7098120.

    • Crossref
    • Export Citation
  • Fischer, J., and M. Visbeck, 1993: Deep velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, https://doi.org/10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and N. L. Jones, 2006: Evaluation of AUV-based ADCP measurements. Limnol. Oceanogr. Methods, 4, 5867, https://doi.org/10.4319/lom.2006.4.58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., M. J. McPhaden, and P. E. Pullen, 1992: Fish-induced bias in acoustic Doppler current profiler data. Proceedings of OCEANS’92: Mastering the Oceans through Technology, Vol. 2, IEEE, 712717, https:/doi.org/10.1109/OCEANS.1992.607670.

  • Freitag, H. P., P. E. Plimpton, and M. J. McPhaden, 1993: Evaluation of an ADCP fish-bias rejection algorithm. Proceedings of OCEANS’93: Engineering in Harmony with Ocean, Vol. 2, IEEE, II394–II397, https://doi.org/10.1109/OCEANS.1993.326127.

    • Crossref
    • Export Citation
  • Fung, J. C. H., J. C. R. Hunt, N. A. Malik, and R. J. Perkins, 1992: Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech., 236, 281318, https://doi.org/10.1017/S0022112092001423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghiglia, D. C., and L. A. Romero, 1994: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Amer., 11A, 107117, https://doi.org/10.1364/JOSAA.11.000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghiglia, D. C., and M. D. Pritt, 1998: Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. Wiley-Interscience, 512 pp.

  • Gordon, R. L., 1996: Acoustic Doppler current profiler: Principles of operation; A practical primer. 2nd ed. RD Instruments, 52 pp.

  • Goring, D. G., and V. I. Nikora, 2002: Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng., 128, 117126, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, A. E., L. Zedel, S. Nylund, R. Craig, and J. Culina, 2015: The Vectron: A pulse coherent acoustic Doppler system for remote turbulence resolving velocity measurements. 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM 2015), IEEE, 210–216, https://doi.org/10.1109/CWTM.2015.7098130.

    • Crossref
    • Export Citation
  • Itoh, K., 1982: Analysis of the phase unwrapping algorithm. Appl. Opt., 21, 2470–2470, https://doi.org/10.1364/AO.21.002470.

  • Lee, J.-S., K. W. Hoppel, S. A. Mango, and A. R. Miller, 1994: Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens., 32, 10171028, https://doi.org/10.1109/36.312890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and R. Serafin, 1984: Pulse-to-pulse coherent Doppler sonar signal processing techniques. J. Atmos. Oceanic Technol., 1, 293308, https://doi.org/10.1175/1520-0426(1984)001<0293:PTPCDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and U. Lemmin, 1994: Open-channel flow and turbulence measurement by high-resolution Doppler sonar. J. Atmos. Oceanic Technol., 11, 12951308, https://doi.org/10.1175/1520-0426(1994)011<1295:OCFATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and E. A. D’Asaro, 2002: The Kolmogorov constant for the Lagrangian velocity spectrum and structure function. Phys. Fluids, 14, 44564459, https://doi.org/10.1063/1.1518695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and E. A. D’Asaro, 2006: Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float. J. Atmos. Oceanic Technol., 23, 964976, https://doi.org/10.1175/JTECH1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., and S. Nylund, 2008: Pure coherent Doppler systems—How far can we push it? Proceedings of the IEEE/OES/CMTC Ninth Working Conference on Current Measurement Technology, IEEE, 19–24, https://doi.org/10.1109/CCM.2008.4480837.

    • Crossref
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, https://doi.org/10.1023/A:1015837020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., 1965: Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids, 8, 10561062, https://doi.org/10.1063/1.1761355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, K., and M. Rochwarger, 1972: A covariance approach to spectral moment estimation. IEEE Trans. Inf. Theory, 18, 588596, https://doi.org/10.1109/TIT.1972.1054886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., and J. A. Elliott, 1982: Dissipation within the surface mixed layer. J. Phys. Oceanogr., 12, 171185, https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, M. J., and D. L. Rudnick, 2003: Observing the ocean with autonomous and Lagrangian platforms and sensors: The role of ALPS in sustained ocean observing systems. Oceanography, 16, 3136, https://doi.org/10.5670/oceanog.2003.06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 1979: Observations of strongly nonlinear internal motion in the open sea using a range-gated Doppler sonar. J. Phys. Oceanogr., 9, 675686, https://doi.org/10.1175/1520-0485(1979)009<0675:OOSNIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and J. T. Sherman, 1990: Acoustic Doppler measurement of internal waves: New techniques and observations. J. Acoust. Soc. Amer., 87, S26, https://doi.org/10.1121/1.2028147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RD Instruments, 2002: High resolution water profiling water mode 11 (FSA-013). Application Note, 4 pp.

  • Rusello, P. J., 2009: A practical primer for pulse coherent instruments. Nortek AS Tech. Note TN-027, 17 pp., http://www.nortekusa.com/lib/technical-notes/tn-027-pulse-coherent-primer.

  • Rusello, P. J., E. Siegel, and M. H. Alford, 2011: High resolution Doppler profiler measurements of turbulence from a profiling body. 2011 IEEE/OES/CWTM Tenth Working Conference on Current, Waves and Turbulence Measurements (CWTM), J. Rizoli White and A. J. Williams III, Eds., IEEE, 259–265, https://doi.org/10.1109/CWTM.2011.5759562.

    • Crossref
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proceedings of the IEEE/OES Eighth Working Conference on Current Measurement Technology, J. Rizoli White and S. Anderson, Eds., IEEE, 152154, https://doi.org/10.1109/CCM.2005.1506361.

    • Crossref
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, E., and P. J. Rusello, 2013: Improving ocean current measurement from gliders: AD2CP hardware, post-processing software provide solutions for gliders. Sea Technol., 54, 3537.

    • Search Google Scholar
    • Export Citation
  • Simmonds, J., and D. MacLennan, 2007: Fisheries Acoustics: Theory and Practice. 2nd ed. Wiley, 256 pp.

  • Teunissen, P. J. G., 1999: An optimality property of the integer least-squares estimator. J. Geod., 73, 587593, https://doi.org/10.1007/s001900050269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., J. Talbert, A. D. Klerk, S. Zippel, M. Guerra, and L. Kilcher, 2015: Turbulence measurements from moving platforms. 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM), IEEE, 79–83, https://doi.org/10.1109/CWTM.2015.7098107.

    • Crossref
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, https://doi.org/10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 1999: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol., 16, 15801597, https://doi.org/10.1175/1520-0426(1999)016<1580:PTPCDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, T. L., 2003: Discussion of “Despiking acoustic Doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora. J. Hydraul. Eng., 129, 484487, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(484).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C. D., and E. Firing, 1992: Sunrise swimmers bias acoustic Doppler current profiles. Deep-Sea Res., 39A, 885892, https://doi.org/10.1016/0198-0149(92)90127-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., C. Shi, and J. Liu, 2012: Integer estimation methods for GPS ambiguity resolution: An applications oriented review and improvement. Surv. Rev., 44, 5971, https://doi.org/10.1179/1752270611Y.0000000004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeung, P. K., and Y. Zhou, 1997: Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev., 56E, 17461752, https://doi.org/10.1103/physreve.56.1746.

    • Search Google Scholar
    • Export Citation
  • Zedel, L., 2014: Noise in coherent Doppler sonar velocity measurements: Where does it come from and what can you do about it? Proc. 2014 Oceans—St. John’s, St. John’s, NL, Canada, 5 pp., https://doi.org/10.1109/OCEANS.2014.7003130.

    • Crossref
    • Export Citation
  • Zedel, L., A. E. Hays, R. Cabrera, and A. Lohrmann, 1996: Performance of a single-beam pule-to-pulse coherent Doppler profiler. IEEE J. Oceanic Eng., 21, 290297, https://doi.org/10.1109/48.508159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., E. A. D’Asaro, and J. A. Nystuen, 2014: The sound of tropical cyclones. J. Phys. Oceanogr., 44, 27632778, https://doi.org/10.1175/JPO-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1977: Spectral moment estimates from correlated pulse pairs. IEEE Trans. Aerosp. Electron. Syst., AES-13, 344354, https://doi.org/10.1109/TAES.1977.308467.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1503 308 29
PDF Downloads 1265 357 31