Calibrating Ground-Based Radars against TRMM and GPM

Robert A. Warren School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Robert A. Warren in
Current site
Google Scholar
PubMed
Close
,
Alain Protat Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
,
Steven T. Siems Australian Research Council Centre of Excellence for Climate System Science, and School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Steven T. Siems in
Current site
Google Scholar
PubMed
Close
,
Hamish A. Ramsay Australian Research Council Centre of Excellence for Climate System Science, and School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Hamish A. Ramsay in
Current site
Google Scholar
PubMed
Close
,
Valentin Louf School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Valentin Louf in
Current site
Google Scholar
PubMed
Close
,
Michael J. Manton School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael J. Manton in
Current site
Google Scholar
PubMed
Close
, and
Thomas A. Kane Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Thomas A. Kane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Calibration error represents a significant source of uncertainty in quantitative applications of ground-based radar (GR) reflectivity data. Correcting it requires knowledge of the true reflectivity at well-defined locations and times during a volume scan. Previous work has demonstrated that observations from certain spaceborne radar (SR) platforms may be suitable for this purpose. Specifically, the Ku-band precipitation radars on board the Tropical Rainfall Measuring Mission (TRMM) satellite and its successor, the Global Precipitation Measurement (GPM) mission Core Observatory satellite together provide nearly two decades of well-calibrated reflectivity measurements over low-latitude regions (±35°). However, when comparing SR and GR reflectivities, great care must be taken to account for differences in instrument sensitivity and frequency, and to ensure that the observations are spatially and temporally coincident. Here, a volume-matching method, developed as part of the ground validation network for GPM, is adapted and used to quantify historical calibration errors for three S-band radars in the vicinity of Sydney, Australia. Volume-matched GR–SR sample pairs are identified over a 7-yr period and carefully filtered to isolate reflectivity differences associated with GR calibration error. These are then used in combination with radar engineering work records to derive a piecewise-constant time series of calibration error for each site. The efficacy of this approach is verified through comparisons between GR reflectivities in regions of overlapping coverage, with improved agreement when the estimated errors are removed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert A. Warren, rob.warren@monash.edu

Abstract

Calibration error represents a significant source of uncertainty in quantitative applications of ground-based radar (GR) reflectivity data. Correcting it requires knowledge of the true reflectivity at well-defined locations and times during a volume scan. Previous work has demonstrated that observations from certain spaceborne radar (SR) platforms may be suitable for this purpose. Specifically, the Ku-band precipitation radars on board the Tropical Rainfall Measuring Mission (TRMM) satellite and its successor, the Global Precipitation Measurement (GPM) mission Core Observatory satellite together provide nearly two decades of well-calibrated reflectivity measurements over low-latitude regions (±35°). However, when comparing SR and GR reflectivities, great care must be taken to account for differences in instrument sensitivity and frequency, and to ensure that the observations are spatially and temporally coincident. Here, a volume-matching method, developed as part of the ground validation network for GPM, is adapted and used to quantify historical calibration errors for three S-band radars in the vicinity of Sydney, Australia. Volume-matched GR–SR sample pairs are identified over a 7-yr period and carefully filtered to isolate reflectivity differences associated with GR calibration error. These are then used in combination with radar engineering work records to derive a piecewise-constant time series of calibration error for each site. The efficacy of this approach is verified through comparisons between GR reflectivities in regions of overlapping coverage, with improved agreement when the estimated errors are removed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert A. Warren, rob.warren@monash.edu
Save
  • Amitai, E., X. Llort, and D. Sempere-Torres, 2009: Comparison of TRMM radar rainfall estimates with NOAA Next-Generation QPE. J. Meteor. Soc. Japan, 87A, 109118, https://doi.org/10.2151/jmsj.87A.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., C. A. Morales, and T. Dinku, 2001: The use of TRMM precipitation radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18, 616628, https://doi.org/10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., 2002: Radar calibration: Some simple approaches. Bull. Amer. Meteor. Soc., 83, 13131316, https://doi.org/10.1175/1520-0477(2002)083<1313:RCSSA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto, 2007: Rain type classification algorithm. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research, Vol. 28, Springer, 213–224.

    • Crossref
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto, 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan, 87A, 3152, https://doi.org/10.2151/jmsj.87A.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolen, S. M., and V. Chandrasekar, 2003: Methodology for aligning and comparing spaceborne radar and ground-based radar observations. J. Atmos. Oceanic Technol., 20, 647659, https://doi.org/10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., Y. Hong, Y. Qi, Y. Wen, J. Zhang, J. J. Gourley, and L. Liao, 2013: Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency. J. Geophys. Res. Atmos., 118, 18141825, https://doi.org/10.1002/jgrd.50138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., L. Baldini, N. Bharadwaj, and P. L. Smith, 2015: Calibration procedures for Global Precipitation-Measurement ground-validation radars. Radio Sci. Bull., 355, 4573.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation of spatial errors of precipitation rates and types from TRMM spaceborne radar over the southern CONUS. J. Hydrometeor., 14, 18841896, https://doi.org/10.1175/JHM-D-13-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crisologo, I., R. A. Warren, K. Muehlbauer, and M. Heistermann, 2017: Using data quality to improve comparison between GPM measurements and ground radars. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 23B.4, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/321038.

  • Gourley, J. J., B. Kaney, and R. A. Maddox, 2003: Evaluating the calibration of radars: A software approach. 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., P3C.1, https://ams.confex.com/ams/32BC31R5C/techprogram/paper_64171.htm.

  • Heistermann, M., S. Jacobi, and T. Pfaff, 2013: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863871, https://doi.org/10.5194/hess-17-863-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hintze, J. L., and R. D. Nelson, 1998: Violin plots: A box plot-density trace synergism. Amer. Stat., 52, 181184, https://doi.org/10.1080/00031305.1998.10480559.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR Level-2. Japan Aerospace Exploration Agency Algorithm Theoretical Basis Doc., 81 pp., http://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201708_whole_1.pdf.

  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248, https://doi.org/10.22499/2.5804.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2000: TRMM Precipitation Radar. Adv. Space Res., 25, 969972, https://doi.org/10.1016/S0273-1177(99)00932-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., M.-L. Ou, J.-D. Park, K. R. Morris, M. R. Schwaller, and D. B. Wolff, 2014: Global Precipitation Measurement (GPM) ground validation (GV) prototype in the Korean Peninsula. J. Atmos. Oceanic Technol., 31, 19021921, https://doi.org/10.1175/JTECH-D-13-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. Gourley, M. Schwaller, W. Petersen, and J. Zhang, 2013: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based national mosaic QPE. J. Hydrometeor., 14, 661669, https://doi.org/10.1175/JHM-D-12-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köck, K., T. Leltne, W. Randeu, M. Divjak, and K.-J. Schrelber, 2000: OPERA: Operational programme for the exchange of weather radar information. First results and outlook for the future. Phys. Chem. Earth, 25, 11471151, https://doi.org/10.1016/S1464-1909(00)00169-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009a: Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, https://doi.org/10.2151/jmsj.87A.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009b: Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar. J. Appl. Meteor. Climatol., 48, 804817, https://doi.org/10.1175/2008JAMC1974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, https://doi.org/10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., A. Protat, C. Jakob, S. Rauniyar, and R. A. Warren, 2017: The relative calibration adjustment technique for calibrating Australian operational radars in near real-time. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 23B.3, https://ams.confex.com/ams/38RADAR/webprogram/Paper320618.html.

  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070, https://doi.org/10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., J. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Technol., 21, 16451658, https://doi.org/10.1175/JTECH1664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, D. B., R. Lewandowski, M. Szewczykowski, H. Beekhuis, and G. Haase, 2014: EUMETNET OPERA weather radar information model for implementation with the HDF5 file format, version 2.2. EUMETNET OPERA Tech. Rep., 38 pp., http://eumetnet.eu/wp-content/uploads/2017/01/OPERA_hdf_description_2014.pdf.

  • Morris, K. R., and M. R. Schwaller, 2009: An enhanced Global Precipitation Measurement (GPM) validation network prototype. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P7.3, https://ams.confex.com/ams/34Radar/techprogram/paper_155254.htm.

  • Morris, K. R., and M. R. Schwaller, 2011: Sensitivity of spaceborne and ground radar comparison results to data analysis methods and constraints. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 68, https://ams.confex.com/ams/35Radar/webprogram/Paper191729.html.

  • NASA, 2014: Tropical Rainfall Measuring Mission precipitation processing system: File specification 2A23, version 7. NASA GSFC Doc., 21 pp., https://storm-pps.gsfc.nasa.gov/storm/data/docs/filespec.TRMM.V7.2A23.pdf.

  • NASA, 2015: Tropical Rainfall Measuring Mission precipitation processing system: File specification 2A25, version 7. NASA GSFC Doc., 24 pp., https://storm-pps.gsfc.nasa.gov/storm/data/docs/filespec.TRMM.V7.2A25.pdf.

  • NASA, 2016: Global Precipitation Measurement precipitation processing system: File specification 2AKu, preliminary version. NASA Earth Observing System Data and Information System Doc., 43 pp., https://storm.pps.eosdis.nasa.gov/storm/data/docs/filespec.GPM.V1.2AKu.pdf.

  • NASA, 2017: Release notes for the PR Level 1 products. NASA GSFC Doc., 1 pp., https://pps.gsfc.nasa.gov/Documents/ReleaseNote_PU1_productV05.pdf.

  • Park, S., S.-H. Jung, and G. Lee, 2015: Cross validation of TRMM PR reflectivity profiles using 3D reflectivity composite from the ground-based radar network over the Korean Peninsula. J. Hydrometeor., 16, 668687, https://doi.org/10.1175/JHM-D-14-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., D. Bouniol, E. O. Connor, H. Klein Baltink, J. Verlinde, and K. Widener, 2011: CloudSat as a global radar calibrator. J. Atmos. Oceanic Technol., 28, 445452, https://doi.org/10.1175/2010JTECHA1443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., S. L. Choi, M. D. Zuluaga, and R. A. Houze, 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett., 40, 34573461, https://doi.org/10.1002/grl.50651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., 2012: Doppler weather radar in Australia. Centre for Australian Weather and Climate Research Tech. Rep. 055, 42 pp., http://www.cawcr.gov.au/technical-reports/CTR_055.pdf.

  • Schwaller, M. R., and K. R. Morris, 2011: A ground validation network for the Global Precipitation Measurement mission. J. Atmos. Oceanic Technol., 28, 301319, https://doi.org/10.1175/2010JTECHA1403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silberstein, D. S., D. B. Wolff, D. A. Marks, D. Atlas, and J. L. Pippitt, 2008: Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Oceanic Technol., 25, 20372045, https://doi.org/10.1175/2008JTECHA1063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W.-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, https://doi.org/10.1007/BF01029783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, N., H. Kuroiwa, and T. Kawanishi, 2003: Four-year result of external calibration for Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 41, 23982403, https://doi.org/10.1109/TGRS.2003.817180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 1417, https://doi.org/10.2151/sola.2015-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, https://doi.org/10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. B. Wolff, 2009: Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic Technol., 26, 857875, https://doi.org/10.1175/2008JTECHA1175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, https://doi.org/10.1175/2008JAMC1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, and W. A. Petersen, 2015: General application of the relative calibration adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration. J. Atmos. Oceanic Technol., 32, 496506, https://doi.org/10.1175/JTECH-D-13-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1529 528 73
PDF Downloads 1384 415 48