• Ackerman, S. A., 1997: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res., 102, 17 06917 079, https://doi.org/10.1029/96JD03066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2012: Middle infrared. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Middle_infrared.

  • Berndt, E. B., B. T. Zavodsky, and M. J. Folmer, 2016: Development and application of Atmospheric Infrared Sounder ozone retrieval products for operational meteorology. IEEE Trans. Geosci. Remote Sens., 54, 958967, https://doi.org/10.1109/TGRS.2015.2471259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., A. Molthan, W. W. Vaughan, and K. Fuell, 2017: Transforming satellite data into weather forecasts. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO064449.

    • Search Google Scholar
    • Export Citation
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high resolution model evaluation. Wea. Forecasting, 27, 784795, https://doi.org/10.1175/WAF-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542, https://doi.org/10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., F. Deluccia, X. Xiong, R. Wolfe, and F. Weng, 2014: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, https://doi.org/10.1109/TGRS.2013.2247768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • COMET, 2010: Multispectral satellite applications: RGB products explained. NCAR, https://www.meted.ucar.edu/training_module.php?id=568#.WpSPuKjwZPY.

  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10, 606619, https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmer, N. J., 2015: Limb correction of individual infrared channels for the improved interpretation of RGB composites. M.S. thesis, Dept. of Atmospheric Science, University of Alabama in Huntsville, 90 pp.

  • Elmer, N. J., E. B. Berndt, and G. J. Jedlovec, 2016: Limb correction of MODIS and VIIRS infrared bands for the improved interpretation of RGB composites. J. Atmos. Oceanic Technol., 33, 10731087, https://doi.org/10.1175/JTECH-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2017a: Dust RGB product. European Organisation for the Exploitation of Meteorological Satellites, 8 pp., http://oiswww.eumetsat.int/~idds/html/doc/dust_interpretation.pdf.

  • EUMETSAT, 2017b: Fog / low clouds RGB product (“night microphysical”). European Organisation for the Exploitation of Meteorological Satellites, 12 pp., http://oiswww.eumetsat.int/~idds/html/doc/fog_interpretation.pdf.

  • EUMETSAT, 2017c: Meteosat Third Generation. European Organisation for the Exploitation of Meteorological Satellites, http://www.eumetsat.int/website/home/Satellites/FutureSatellites/MeteosatThirdGeneration/index.html.

  • EUMETSAT User Services, 2009: Best practices for RGB compositing of multi-spectral imagery. European Organisation for the Exploitation of Meteorological Satellites, 8 pp., http://oiswww.eumetsat.int/~idds/html/doc/best_practices.pdf.

  • Fuell, K. K., B. J. Guyer, D. Kann, A. L. Molthan, and N. Elmer, 2016: Next generation satellite RGB dust imagery leads to operational changes at NWS Albuquerque. J. Oper. Meteor., 4, 7591, https://doi.org/10.15191/nwajom.2016.0406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., W. M. Lapenta, and G. J. Jedlovec, 2004: Improving the transition of Earth satellite observations from research to operations. Proc. Space 2004 Conf. and Exhibit, San Diego, CA, AIAA, AIAA 2004-5865, https://doi.org/10.2514/6.2004-5865.

    • Crossref
    • Export Citation
  • Han, Y., P. Van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM). NOAA Tech. Rep. NESDIS 122, 40 pp.

  • Hastings, D. A., and W. J. Emery, 1992: The Advanced Very High Resolution Radiometer (AVHRR): A brief reference guide. Photogramm. Eng. Remote Sens., 58, 11831188.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 2015: L-2 products and RGB imagery from Himawari-8. WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology, https://www.wmo-sat.info/vlab/next-generation-of-satelliles/.

  • Hidehiki, M., T. Masaya, K. Yuki, 2015: VIS and IR bands of Himawari-8/AHI compatible with those of MTSAT-2/Imager. Japan Meteorological Agency Meteorological Satellite Center Tech. Note 60, 18 pp., http://www.data.jma.go.jp/mscweb/technotes/msctechrep60.pdf.

  • Hillger, D. W., and J. D. Clark, 2002a: Principal component image analysis of MODIS for volcanic ash. Part I: Most important bands and implications for future GOES imagers. J. Appl. Meteor., 41, 9851001, https://doi.org/10.1175/1520-0450(2002)041<0985:PCIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and J. D. Clark, 2002b: Principal component image analysis of MODIS for volcanic ash. Part II: Simulation of current GOES and GOES-M imagers. J. Appl. Meteor., 41, 10031010, https://doi.org/10.1175/1520-0450(2002)041<1003:PCIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and G. P. Ellrod, 2003: Detection of important atmospheric and surface features by employing principal component image transformation of GOES imagery. J. Appl. Meteor., 42, 611629, https://doi.org/10.1175/1520-0450(2003)042<0611:DOIAAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and Coauthors, 2013: First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteor. Soc., 94, 10191029, https://doi.org/10.1175/BAMS-D-12-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jedlovec, G., 2013: Transitioning research satellite data to the operational weather community: The SPoRT paradigm. IEEE Geosci. Remote Sens. Mag., 1 (1), 6266, https://doi.org/10.1109/MGRS.2013.2244704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerdraon, G., H. Le Gléau, and M.-P. Raoul, 2015: Combined use of 1.6 and 2.25 micrometer reflectances to improve the cloud phase retrieval in the NWCSAF/GEO cloud microphysics. Proc. 2015 EUMETSAT Meteorological Satellite Conf., Toulouse, France, EUMETSAT and Météo-France, 17 pp., https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2305526.html.

  • Kerkmann, J., 2016: MTG training plans and rapid scan experiments/training workshop. 2016 NOAA Satellite Proving Ground/User-Readiness Meeting, Norman, OK, 53 pp., https://courses.comet.ucar.edu/mod/resource/view.php?id=10834&forceview=1.

  • Legrand, M., J. J. Bertrand, M. Desbois, L. Menenger, Y. Fouquart, 1989: The potential of infrared satellite data for the retrieval of Saharan-dust optical depth over Africa. J. Appl. Meteor., 28, 309319, https://doi.org/10.1175/1520-0450(1989)028<0309:TPOISD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, https://doi.org/10.5194/acp-8-6739-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., T. J. Schmit, W. M. MacKenzie Jr., C. P. Jewett, M. M. Gunshor, and L. Grasso, 2012: 10.35 μm: Atmospheric window on the GOES-R Advanced Baseline Imager with less moisture attenuation. J. Appl. Remote Sens., 6, 063598, https://doi.org/10.1117/1.JRS.6.063598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., L. D. Grasso, J. F. Dostalek, and J. Kerkmann, 2014: Use of the GOES-R split-window difference to diagnose deepening low-level water vapor. J. Appl. Meteor. Climatol., 53, 20052016, https://doi.org/10.1175/JAMC-D-14-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., K. K. Fuell, H. K. Oswald, and J. A. Knaff, 2012: Development of RGB composite imagery for operational weather forecasting applications. Eighth Annual Symp. on Future Operational Environmental Satellite Systems, New Orleans, LA, Amer. Meteor. Soc., 301, https://ams.confex.com/ams/92Annual/webprogram/Paper196879.html.

  • NOAA, 2016: Comprehensive Large Array-Data Stewardship System (CLASS). NOAA, http://www.class.noaa.gov/.

  • Purdom, J., 2015: Prospects and expectation towards the era when the next generation geostationary meteorological satellites’ global array will be in operation. Sixth Asia/Oceania Meteorological Satellite Users’ Conf., Tokyo, Japan, Japan Meteorological Agency, S01-1, 93 pp., http://www.data.jma.go.jp/mscweb/en/aomsuc6_data/oral/st1-01.pdf.

  • Purdom, J., 2016: The new generation of meteorological satellites: Great challenges lie ahead as do great rewards. Seventh Asia-Oceania/Second AMS-Asia/Second KMA Meteorological Satellite Users’ Conf., Songdo, Incheon, South Korea, Amer. Meteor. Soc. and Korea Meteorological Administration, S1-1, 2 pp., http://nmsc.kma.go.kr/html/homepage/ko/common/Resource/downloadResource.do?RES_PTH=/jsp/upload_files/aomsuc7/S1-1_Presentation.pdf.

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS—Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schipper, J., and V. Nietosvaara, 2009: Operational use of RGBs. EUMETRAIN Training Module, EUMETSAT, http://www.eumetrain.org/resources/operational_use_rgb.html.

  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S. A. K., and V. Singh, 2015: Operational use to the imagery and access of data of INSAT-3D-satellite for forecasters and trainers. WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology, https://www.wmo-sat.info/vlab/next-generation-of-satelliles/.

  • Shimizu, A., 2015: Introduction of JMA VLab support site on RGB composite imagery and tentative RGBs. Sixth Asia/Oceania Meteorological Satellite Users’ Conf., Tokyo, Japan, Japan Meteorological Agency, 39 pp., http://www.data.jma.go.jp/mscweb/en/aomsuc6_data/oral/st1-07.pdf.

  • Strabala, K., and S. Ackerman, 1994: Cloud properties inferred from 8–12-µm data. J. Appl. Meteor., 33, 212229, https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susilawati, A., 2015: Himawari-8 utilisation for volcanic ash monitoring. 13 August 2015 Regional Focus Group Meeting, Melbourne, VIC, Australia, Melbourne VLab Centre of Excellence, http://www.virtuallab.bom.gov.au/archive/regional-focus-group-recordings/.

  • Van Delst, P., 2013: Joint Center for Satellite Data Assimilation: CRTM: v2.1.3 user guide. Rev29365, NOAA, 198 pp., http://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1.3/REL-2.1.3.CRTM_User_Guide.pdf.

  • World Meteorological Organization, 2007: RGB Composite Satellite Imagery Workshop final report. RGB Composite Satellite Imagery Workshop, Boulder, CO, WMO, 14 pp., http://www.wmo.int/pages/prog/sat/documents/RGB-1_Final-Report.pdf.

  • World Meteorological Organization, 2012: WMO/EUMETSAT Workshop on RGB Satellite Products final report. WMO/EUMETSAT Workshop on RGB Satellite Products, Seeheim, Germany, WMO, 21 pp., http://www.wmo.int/pages/prog/sat/documents/RGB-WS-2012_FinalReport.pdf.

  • Wu, A., Y. Xie, X. Xiong, and I. Chu, 2012: Assess calibration consistency of MODIS and AVHRR thermal infrared bands using SNO observations corrected for atmospheric effects. IEEE Geosci. Remote Sens. Lett., 9, 487491, https://doi.org/10.1109ILGRS.2011.2172677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavodsky, B. T., A. L. Molthan, and M. J. Folmer, 2013: Multispectral imagery for detecting stratospheric air intrusions associated with mid-latitude cyclones. J. Oper. Meteor., 1, 7183, https://doi.org/10.15191/nwajom.2013.0107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeschke, B., 2012: Effective training and use of RGB satellite products for forecasters. Regional Focus Group Meeting, Melbourne, VIC, Australia, Melbourne VLab Center of Excellence, 47 pp., http://www.virtuallab.bom.gov.au/index.php/download_file/view/421/119/.

  • Zeschke, B., 2015a: Himawari-8 derived RGB products applied to the Australasia-Pacific region. Sixth Asia/Oceania Meteorological Satellite Users’ Conf., Tokyo, Japan, Japan Meteorological Agency, 33 pp., http://www.data.jma.go.jp/mscweb/en/aomsuc6_data/oral/st1-05.pdf.

  • Zeschke, B., 2015b: Himawari-8 RGB products applied to the Australasian and Pacific regions. Science Week 2015, Melbourne, VIC, Australia, Melbourne VLab Centre of Excellence, http://www.virtuallab.bom.gov.au/events/science-week-2015/science-week-2015-recordings/.

  • Zeschke, B., 2015c: Three methods of tuning Himawari RGB products, with some objectively derived RGB recipes. 26 November 2015 Regional Focus Group Meeting, Melbourne, VIC, Australia, Melbourne VLab Centre of Excellence, http://www.virtuallab.bom.gov.au/archive/regional-focus-group-recordings/.

  • Zeschke, B., 2016a: A night microphysics (tropical) and striated delta (midlatitude) case study. 10 May 2016 Regional Focus Group Meeting, Melbourne, VIC, Australia, Melbourne VLab Centre of Excellence, http://www.virtuallab.bom.gov.au/archive/regional-focus-group-recordings/.

  • Zeschke, B., 2016b: Night microphysics RGB and day convection RGB case studies. 7 June 2016 Regional Focus Group Meeting, Melbourne, VIC, Australia, Melbourne VLab Centre of Excellence, http://www.virtuallab.bom.gov.au/archive/regional-focus-group-recordings/.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 16
PDF Downloads 43 43 13

A Methodology to Determine Recipe Adjustments for Multispectral Composites Derived from Next-Generation Advanced Satellite Imagers

View More View Less
  • 1 Earth Science Branch, NASA Marshall Space Flight Center, and NASA Short-Term Prediction Research and Transition Center, Huntsville, Alabama
  • 2 Earth System Science Center, University of Alabama in Huntsville, and NASA Short-Term Prediction Research and Transition Center, Huntsville, Alabama
  • 3 Earth Science Branch, NASA Marshall Space Flight Center, and NASA Short-Term Prediction Research and Transition Center, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) began creating multispectral [i.e., red–green–blue (RGB)] composites in the early 2000s with the advent of the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI). As new satellite sensors—for example, the Himawari-8 Advanced Himawari Imager (AHI) and the Geostationary Operational Environmental Satellite Advanced Baseline Imager (ABI)—become available, there is a need to adjust the EUMETSAT RGB standard thresholds (i.e., recipes) to account for differences in spectral characteristics, spectral response, and atmospheric absorption in order to maintain an interpretation consistent with legacy composites. For the purpose of comparing RGB composites derived from nonoverlapping geostationary sensors, an adjustment technique was applied to the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) to create an intermediate reference sensor (i.e., SEVIRI proxy). Brightness temperature offset values between each AHI and SEVIRI proxy band centered near 3.9, 8.6, 11.0, and 12.0 µm were determined with this technique and through line-by-line radiative transfer model simulations. The relationship between measured brightness temperature of AHI and the SEVIRI proxy was determined though linear regression similar to research by the Japan Meteorological Agency. The linear regression coefficients were utilized to determine the RGB recipe adjustments. Adjusting the RGB recipes to account for the differences in spectral characteristics results in RGB composites consistent with legacy EUMETSAT composites. The methodology was applied to an example of the Nighttime Microphysics RGB, confirming the Japan Meteorological Agency adjustments and demonstrating a simple methodology to determine recipe adjustments for RGB composites derived with next-generation sensors.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Emily Berndt, emily.b.berndt@nasa.gov

Abstract

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) began creating multispectral [i.e., red–green–blue (RGB)] composites in the early 2000s with the advent of the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI). As new satellite sensors—for example, the Himawari-8 Advanced Himawari Imager (AHI) and the Geostationary Operational Environmental Satellite Advanced Baseline Imager (ABI)—become available, there is a need to adjust the EUMETSAT RGB standard thresholds (i.e., recipes) to account for differences in spectral characteristics, spectral response, and atmospheric absorption in order to maintain an interpretation consistent with legacy composites. For the purpose of comparing RGB composites derived from nonoverlapping geostationary sensors, an adjustment technique was applied to the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) to create an intermediate reference sensor (i.e., SEVIRI proxy). Brightness temperature offset values between each AHI and SEVIRI proxy band centered near 3.9, 8.6, 11.0, and 12.0 µm were determined with this technique and through line-by-line radiative transfer model simulations. The relationship between measured brightness temperature of AHI and the SEVIRI proxy was determined though linear regression similar to research by the Japan Meteorological Agency. The linear regression coefficients were utilized to determine the RGB recipe adjustments. Adjusting the RGB recipes to account for the differences in spectral characteristics results in RGB composites consistent with legacy EUMETSAT composites. The methodology was applied to an example of the Nighttime Microphysics RGB, confirming the Japan Meteorological Agency adjustments and demonstrating a simple methodology to determine recipe adjustments for RGB composites derived with next-generation sensors.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Emily Berndt, emily.b.berndt@nasa.gov
Save