• Anderson, G. C., 1969: Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr., 14, 386391, https://doi.org/10.4319/lo.1969.14.3.0386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, J. R., 1987: Principles of Ocean Physics. International Geophysics Series, Vol. 38, Academic Press, 634 pp.

  • Apel, J. R., J. R. Holbrook, A. K. Liu, and J. J. Tsai, 1985: The Sulu Sea internal soliton experiment. J. Phys. Oceanogr., 15, 16251651, https://doi.org/10.1175/1520-0485(1985)015<1625:TSSISE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Rubino, W. Alpers, and J. O. Backhaus, 1997: Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS 1/2 satellites. J. Phys. Oceanogr., 27, 648663, https://doi.org/10.1175/1520-0485(1997)027<0648:IWITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-Y., J. R.-C. Hsu, C.-W. Chen, H.-H. Chen, C.-F. Kuo, and M.-H. Cheng, 2007: Generation of internal solitary wave by gravity collapse. J. Mar. Sci. Technol., 15, 17.

    • Search Google Scholar
    • Export Citation
  • Chen, Z.-W., J. Xie, D. Wang, J.-M. Zhan, J. Xu, and S. Cai, 2014: Density stratification influences on generation of different modes internal solitary waves. J. Geophys. Res. Oceans, 119, 70297046, https://doi.org/10.1002/2014JC010069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, C., S. Nam, and H. Song, 2016: Seasonal variation of speed and width from kinematic parameters of mode-1 nonlinear internal waves in the northeastern East China Sea. J. Geophys. Res. Oceans, 121, 59425958, https://doi.org/10.1002/2016JC012035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J.-K., Y. J. Park, B. R. Lee, J. Eom, J.-E. Moon, and J.-H. Ryu, 2014: Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sens. Environ., 146, 2435, https://doi.org/10.1016/j.rse.2013.05.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, J. C. B., A. L. New, M. A. Srokosz, and T. J. Smyth, 2002: On the observability of internal tidal waves in remotely-sensed ocean colour data. Geophys. Res. Lett., 29, 1569, https://doi.org/10.1029/2001GL013888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., and W. R. McCluney, 1975: Estimation of the depth of sunlight penetration in the sea for remote sensing estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Opt., 14, 413416, https://doi.org/10.1364/AO.14.000413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., and D. K. Clark, 1980: Remote sensing optical properties of a stratified ocean. Appl. Opt., 19, 34283430, https://doi.org/10.1364/AO.19.003428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38, 395425, https://doi.org/10.1146/annurev.fluid.38.050304.092129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, M.-K., A. K. Liu, and C. Liu, 2000: A study of internal waves in the China Seas and Yellow Sea using SAR. Cont. Shelf Res., 20, 389410, https://doi.org/10.1016/S0278-4343(99)00078-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichiye, T., 1984: Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. Ocean Hydrodynamics of the Japan and East China Seas, T. Ichiye, Ed., Elsevier Oceanography Series, Vol. 39, Elsevier, 15–54, https://doi.org/10.1016/S0422-9894(08)70289-7.

    • Crossref
    • Export Citation
  • Jackson, C. R., 2007: Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112, C11012, https://doi.org/10.1029/2007JC004220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, C. R., and J. R. Apel, 2002: Oceanic internal waves and solitons. An atlas of internal solitary-like waves and their properties. Global Ocean Associates, 1–40.

  • Jo, Y. H., J. G. Choi, and J. Park, 2017: Physical boundaries of Intrathermocline Ulleung Eddies in the East/Japan Sea. Deep.-Sea Res. II, 143, 1523, https://doi.org/10.1016/j.dsr2.2016.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-J., S. Nam, H. R. Kim, W. M. Moon, and K. Kim, 2005: Can near-inertial internal waves in the East Sea be observed by synthetic aperture radar? Geophys. Res. Lett., 32, L02606, https://doi.org/10.1029/2004GL021532.

    • Search Google Scholar
    • Export Citation
  • Kim, H. R., S. Ahn, and K. Kim, 2001: Observations of highly nonlinear internal solitons generated by near-inertial internal waves off the east coast of Korea. Geophys. Res. Lett., 28, 31913194, https://doi.org/10.1029/2001GL013130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu, and Y. Volkov, 2004: Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61, 157174, https://doi.org/10.1016/j.pocean.2004.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, T., and H.-Y. Choi, 2003: The characteristics of internal waves observed by SAR and in-situ measurements data near Ocheong-Do in the Yellow Sea. J. Korean Soc. Oceanogr., 8, 132137.

    • Search Google Scholar
    • Export Citation
  • Klemas, V., 2012: Remote sensing of ocean internal waves: An overview. J. Coastal Res., 28, 540546, https://doi.org/10.2112/JCOASTRES-D-11-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, T., H. Morimoto, Y. Igeta, and T. Ichikawa, 2015: Macroscale-wide nutrient inversions in the subsurface layer of the Japan Sea during summer. J. Geophys. Res. Oceans, 120, 74767492, https://doi.org/10.1002/2015JC010845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavrova, O. Y., M. I. Mityagina, A. N. Serebryany, K. D. Sabinin, N. A. Kalashnikova, E. V. Krayushkin, and I. Khymchenko, 2014: Internal waves in the Black Sea: Satellite observations and in-situ measurements. Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014, C. R. Bostater, S. P. Mertikas, and Z. Neyt, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9240), 924016, https://doi.org/10.1117/12.2067047.

    • Crossref
    • Export Citation
  • Lee, J. H., I. Lozovatsky, S.-T. Jang, C. J. Jang, C. S. Hong, and H. J. S. Fernando, 2006: Episodes of nonlinear internal waves in the northern East China Sea. Geophys. Res. Lett., 33, L18601, https://doi.org/10.1029/2006GL027136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, S., and J.-H. Park, 2008: Semidiurnal internal tides off the east coast of Korea inferred from synthetic aperture radar images. Geophys. Res. Lett., 35, L05602, https://doi.org/10.1029/2007GL032536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, 1998: Ocean color chlorophyll algorighms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, https://doi.org/10.1029/98JC02160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, M. H., and P. C. Mignerey, 2003: Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. J. Geophys. Res., 108, 3064, https://doi.org/10.1029/2001JC001163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, A. R., and T. L. Burch, 1980: Internal solitons in the Andaman Sea. Science, 208, 451460, https://doi.org/10.1126/science.208.4443.451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X., G. T. F. Wong, F.-K. Shiah, and T.-Y. Ho, 2012: Enhancement of biological productivity by internal waves: Observations in the summertime in the northern South China Sea. J. Oceanogr., 68, 427437, https://doi.org/10.1007/s10872-012-0107-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-E., K.-A. Park, D. S. Ullman, P. C. Cornillon, and Y.-J. Park, 2016: Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data. Remote Sens. Lett., 7, 11311140, https://doi.org/10.1080/2150704X.2016.1219423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-H., and D. R. Watts, 2006: Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36, 2234, https://doi.org/10.1175/JPO2846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K.-A., H.-J. Woo, and J.-H. Ryu, 2012: Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea. Ocean Sci. J., 47, 347358, https://doi.org/10.1007/s12601-012-0033-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and A. L. New, 1995: Structure, seasonal development and sunglint spatial coherence of the internal tide on the Celtic and Armorican shelves and in the Bay of Biscay. Deep-Sea Res. I, 42, 245284, https://doi.org/10.1016/0967-0637(94)00041-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, C., 1983: A satellite study of ocean internal waves. NOAA Tech. Memo. ERL-PMEL-46, 70 pp.

  • Serebryany, A. N., 2015: Nonlinear internal waves on shelf of the Sea of Japan. Proc. Third Underwater Acoustics Conf. and Exhibition (UACE2015), Platanias, Crete, Greece, UACE, 771–778.

  • Smith, R. C., 1981: Remote sensing and depth distribution of ocean chlorophyll. Mar. Ecol.: Prog. Ser., 5, 359361, https://doi.org/10.3354/meps005359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez, A., S. Flecha, M. Bruno, D. Macías, and G. Navarro, 2009: Internal waves and short-scale distribution patterns of chlorophyll in the Strait of Gibraltar and Alborán Sea. Geophys. Res. Lett., 36, L23601, https://doi.org/10.1029/2009GL040959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., B. Liu, and X. Li, 2014: Internal solitary waves in the China seas observed using satellite remote-sensing techniques: A review and perspectives. Int. J. Remote Sens., 35, 39263946, https://doi.org/10.1080/01431161.2014.916442.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 11
PDF Downloads 28 28 8

Hourly Observed Internal Waves by Geostationary Ocean Color Imagery in the East/Japan Sea

View More View Less
  • 1 Department of Oceanography, Pusan National University, Busan, and Jeju International Marine Science Research and Logistics Center, Korea Institute of Ocean Science and Technology, Jeju, South Korea
  • 2 Jeju International Marine Science Research and Logistics Center, Korea Institute of Ocean Science and Technology, Jeju, South Korea
  • 3 Department of Oceanography, Pusan National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

As internal waves (IWs) are generated via internal tidal energy near the bottom shelf break of the Korea Strait, continuous evolutions of IWs are extremely difficult to observe using satellite observations. However, the Geostationary Ocean Color Imager (GOCI) has enabled the detection of IWs in the East/Japan Sea (EJS) on an hourly basis to investigate their propagation behavior. For an extended IW analysis, a total of seven packets were identified using GOCI chlorophyll-a concentration (Chl-a) measurements around the Ulleung Basin and Dok Island in the EJS. The results demonstrate that the IW locations had lower Chl-a values than non-IW-affected regions on 10, 11, 13, and 14 August 2013. The lower Chl-a values are due to the significant wave heights of the IWs, which cause surface water masses to be dispersed. In addition, from the continuous trajectories of the waves in the hourly GOCI Chl-a imagery, quantitative physical parameters of the IWs, such as their pathway (northeasterly), phase speed (1.46–1.61 m s−1), amplitude (20.62–26.76 m), and period (12.29 h), could be obtained. Therefore, the advantage of using GOCI is the ability to detect and analyze the physical characteristics of IWs on an hourly time scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Young-Heon Jo, joyoung@pusan.ac.kr

Abstract

As internal waves (IWs) are generated via internal tidal energy near the bottom shelf break of the Korea Strait, continuous evolutions of IWs are extremely difficult to observe using satellite observations. However, the Geostationary Ocean Color Imager (GOCI) has enabled the detection of IWs in the East/Japan Sea (EJS) on an hourly basis to investigate their propagation behavior. For an extended IW analysis, a total of seven packets were identified using GOCI chlorophyll-a concentration (Chl-a) measurements around the Ulleung Basin and Dok Island in the EJS. The results demonstrate that the IW locations had lower Chl-a values than non-IW-affected regions on 10, 11, 13, and 14 August 2013. The lower Chl-a values are due to the significant wave heights of the IWs, which cause surface water masses to be dispersed. In addition, from the continuous trajectories of the waves in the hourly GOCI Chl-a imagery, quantitative physical parameters of the IWs, such as their pathway (northeasterly), phase speed (1.46–1.61 m s−1), amplitude (20.62–26.76 m), and period (12.29 h), could be obtained. Therefore, the advantage of using GOCI is the ability to detect and analyze the physical characteristics of IWs on an hourly time scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Young-Heon Jo, joyoung@pusan.ac.kr
Save