• Ashenden, R., and J. D. Marwitz, 1998: Characterizing the supercooled large drop environment with corresponding turboprop aircraft response. J. Aircr., 35, 912920, https://doi.org/10.2514/2.2386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banitalebi Dehkordi, H., M. Farzaneh, P. Van Dyke, and L. E. Kollar, 2013: The effect of droplet size and liquid water content on ice accretion and aerodynamic coefficients of tower legs. Atmos. Res., 132–133, 362374, https://doi.org/10.1016/j.atmosres.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., T. A. Omeron, F. McDonough, and M. K. Politovich, 1997: The relationship between aircraft icing and synoptic-scale weather conditions. Wea. Forecasting, 12, 742762, https://doi.org/10.1175/1520-0434(1997)012<0742:TRBAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., C. A. Wolff, and F. McDonough, 2007: An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States. J. Appl. Meteor. Climatol., 46, 18571878, https://doi.org/10.1175/2007JAMC1607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. W. Nielsen, 1993: Radiosonde penetration of an undilute cumulonimbus anvil. Mon. Wea. Rev., 121, 16881702, https://doi.org/10.1175/1520-0493(1993)121<1688:RPOAUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, https://doi.org/10.1175/JAM2155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, D., 2010: Rawinsonde observations. Operations and Services, Upper Air Program NWSPD 10-14, National Weather Service Manual 10-1401, 208 pp., http://www.nws.noaa.gov/directives/sym/pd01014001curr.pdf.

  • Cober, S. G., G. A. Isaac, and J. Walter Strapp, 2001: Characterization of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 19842002, https://doi.org/10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czys, R. R., R. W. Scott, K. C. Tang, R. W. Pryzbylinski, and M. E. Sabones, 1996: A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 11, 591598, https://doi.org/10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, https://doi.org/10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automated designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, https://doi.org/10.1175/2007JAMC1634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellet storm. Mon. Wea. Rev., 123, 31443162, https://doi.org/10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and D. J. Musil, 1982: Case study of a hailstorm in Colorado. Part II: Particle growth processes at mid-levels deduced from in-situ measurements. J. Atmos. Sci., 39, 28472866, https://doi.org/10.1175/1520-0469(1982)039<2847:CSOAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 29022928, https://doi.org/10.1175/JAS-D-14-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman Jr., 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of the northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and U. Blahak, 2001: Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteor., 40, 843849, https://doi.org/10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luers, J. K., and R. E. Eskridge, 1998: Use of radiosonde temperature data in climate studies. J. Climate, 11, 10021019, https://doi.org/10.1175/1520-0442(1998)011<1002:UORTDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vomel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 water vapor measurements. J. Geophys. Res., 114, D11305, https://doi.org/10.1029/2008JD011565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1989: Aircraft icing caused by large supercooled droplets. J. Appl. Meteor., 28, 856868, https://doi.org/10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and T. A. O. Bernstein, 2002: Aircraft icing conditions in northeast Colorado. J. Appl. Meteor., 41, 118132, https://doi.org/10.1175/1520-0450(2002)041<0118:AICINC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Atmospheric Sciences Library, Kluwer Academic Publishers, 954 pp.

  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, D. Miller, and K. E. Kunkel, 2001: A synoptic weather pattern and sounding-based climatology of freezing precipitation in the United States east of the Rocky Mountains. J. Appl. Meteor., 40, 17241747, https://doi.org/10.1175/1520-0450(2001)040<1724:ASWPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. V. Ryzhkov, T. J. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., A. V. Ryzhkov, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysics modeling. J. Appl. Meteor. Climatol., 55, 17471761, https://doi.org/10.1175/JAMC-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Tromel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sand, W. R., W. A. Cooper, M. K. Politovich, and D. L. Veal, 1984: Icing conditions encountered by research aircraft. J. Climate Appl. Meteor., 23, 14271440, https://doi.org/10.1175/0733-3021-23.10.1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1984: Deep 0°C isothermal layers within precipitation bands over southern Ontario. J. Geophys. Res., 89, 25672572, https://doi.org/10.1029/JD089iD02p02567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, 2010: Vaisala radiosonde RS92 performance in the WMO intercomparison of high quality radiosonde systems. Vaisala White Paper, 17 pp. http://www.vaisala.com/Vaisala%20Documents/White%20Papers/WEA-MET-WMO-Test-White_Paper-B211129EN-D-LOW.pdf.

  • Van den Broeke, M. S., D. M. Tobin, and M. R. Kumjian, 2016: Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Wea. Forecasting, 31, 11791196, https://doi.org/10.1175/WAF-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, S. M., 2016: A balloon-borne particle size, imaging, and velocity probe for in situ microphysical measurements. Ph.D dissertation, University of Oklahoma, 189 pp., https://shareok.org/handle/11244/45407.

  • Waugh, S. M., C. L. Ziegler, D. R. MacGorman, S. E. Fredrickson, D. W. Kennedy, and W. D. Rust, 2015: A balloonborne particle size, imaging, and velocity probe for in situ microphysical measurements. J. Atmos. Oceanic Technol., 32, 15621580, https://doi.org/10.1175/JTECH-D-14-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 11
PDF Downloads 22 22 11

On the Use of Radiosondes in Freezing Precipitation

View More View Less
  • 1 NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Radiosonde observations are used the world over to provide critical upper-air observations of the lower atmosphere. These observations are susceptible to errors that must be mitigated or avoided when identified. One source of error not previously addressed is radiosonde icing in winter storms, which can affect forecasts, warning operations, and model initialization. Under certain conditions, ice can form on the radiosonde, leading to decreased response times and incorrect readings. Evidence of radiosonde icing is presented for a winter storm event in Norman, Oklahoma, on 24 November 2013. A special sounding that included a particle imager probe and a GoPro camera was flown into the system producing ice pellets. While the iced-over temperature sensor showed no evidence of an elevated melting layer (ML), complementary Particle Size, Image, and Velocity (PASIV) probe and polarimetric radar observations provide clear evidence that an ML was indeed present. Radiosonde icing can occur while passing through a layer of supercooled drops, such as frequently found in a subfreezing layer that often lies below the ML in winter storms. Events that have warmer/deeper MLs would likely melt any ice present off the radiosonde, minimizing radiosonde icing and allowing the ML to be detected. This paper discusses the hypothesis that the absence of an ML in the radiosonde data presented here is more likely to occur in winter storms that produce ice pellets, which tend to have cooler/shallower MLs. Where sounding data do appear to be compromised by icing, polarimetric radar data might be used to identify MLs for nowcasting purposes and numerical model initialization.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean Waugh, sean.waugh@noaa.gov

Abstract

Radiosonde observations are used the world over to provide critical upper-air observations of the lower atmosphere. These observations are susceptible to errors that must be mitigated or avoided when identified. One source of error not previously addressed is radiosonde icing in winter storms, which can affect forecasts, warning operations, and model initialization. Under certain conditions, ice can form on the radiosonde, leading to decreased response times and incorrect readings. Evidence of radiosonde icing is presented for a winter storm event in Norman, Oklahoma, on 24 November 2013. A special sounding that included a particle imager probe and a GoPro camera was flown into the system producing ice pellets. While the iced-over temperature sensor showed no evidence of an elevated melting layer (ML), complementary Particle Size, Image, and Velocity (PASIV) probe and polarimetric radar observations provide clear evidence that an ML was indeed present. Radiosonde icing can occur while passing through a layer of supercooled drops, such as frequently found in a subfreezing layer that often lies below the ML in winter storms. Events that have warmer/deeper MLs would likely melt any ice present off the radiosonde, minimizing radiosonde icing and allowing the ML to be detected. This paper discusses the hypothesis that the absence of an ML in the radiosonde data presented here is more likely to occur in winter storms that produce ice pellets, which tend to have cooler/shallower MLs. Where sounding data do appear to be compromised by icing, polarimetric radar data might be used to identify MLs for nowcasting purposes and numerical model initialization.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean Waugh, sean.waugh@noaa.gov
Save