• Android, 2017a: Motion sensors. Google, accessed 28 April 2017, https://developer.android.com/guide/topics/sensors/sensors_motion.html.

  • Android, 2017b: Monitoring the battery level and charging state. Google, accessed 28 April 2017, https://developer.android.com/training/monitoring-device-state/battery-monitoring.html.

  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosch Sensortec, 2012: Digital barometric pressure sensor BMP280 from Bosch Sensortec sets market reference: Improved performance, smallest footprint. Bosch Press Release, 3 pp., http://www.bosch-presse.de/pressportal/de/en/digital-barometric-pressure-sensor-bmp280-from-bosch-sensortec-sets-market-reference-41912.html.

  • Bosch Sensortec, 2018: BMP280 digital pressure sensor. Bosch Datasheet, 49 pp., https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-19.pdf.

  • Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123140, https://doi.org/10.1023/A:1018054314350.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Chapman, L., C. Bell, and S. Bell, 2017: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. Int. J. Climatol., 37, 35973605, https://doi.org/10.1002/joc.4940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • De Vos, L., H. Leijnse, A. Overeem, R. Uijlenhoet, 2017: The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol. Earth Syst. Sci., 21, 765777, https://doi.org/10.5194/hess-21-765-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droste, A. M., J. J. Pape, A. Overeem, H. Leijnse, G. J. Steeneveld, A. J. Van Delden, and R. Uijlenhoet, 2017: Crowdsourcing urban air temperatures through smartphone battery temperatures in Sao Paulo, Brazil. J. Atmos. Oceanic Technol., 34, 18531866, https://doi.org/10.1175/JTECH-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, J., 1976: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller, Eds., Lecture Notes in Mathematics, Vol. 571, Springer, 85–100, https://doi.org/10.1007/BFb0086566.

    • Crossref
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. S. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, https://doi.org/10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, 1996: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, E. Simoudis, J. Han, and U. Fayyad, Eds., AAAI Press, 226–231.

  • Gallus, W. A., Jr., J. Correia, and I. Jankov, 2005: The 4 June 1999 derecho event: A particularly difficult challenge for numerical weather prediction. Wea. Forecasting, 20, 705728, https://doi.org/10.1175/WAF883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., M. J. Oimoen, and G. A. Evans, 2014: Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets—SRTM and ASTER. U.S. Geological Survey Open-File Rep. 2014–1008, 10 pp.

  • Hanson, G. S., and S. J. Greybush, 2016: Impact of assimilating surface pressure observations from smartphones on regional, convective-allowing ensemble forecasts: Observing system simulation experiments. M.S. thesis, Dept. of Meteorology and Atmospheric Science, The Pennsylvania State University, 47 pp.

  • Ho, T. K., 1998: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell., 20, 832844, https://doi.org/10.1109/34.709601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Infineon, 2016: DPS310—Digital pressure sensor: Digital barometric pressure sensor for portable devices. Infineon Technologies AG Doc. IFX-sch1406115644540, 41 pp., https://www.infineon.com/dgdl/Infineon-DPS310-DS-v01_00-EN.pdf?fileId=5546d462576f34750157750826c42242.

  • Kim, N.-Y., Y.-H. Kim, Y. Yoon, H.-H. Im, R. K. Y. Choi, and Y. H. Lee, 2015: Correcting air-pressure data collected by MEMS sensors in smartphones. J. Sens., 2015, 245498, https://doi.org/10.1155/2015/245498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., J.-H. Ha, Y. Yoon, N.-Y. Kim, H.-H. Im, S. Sim, and R. K. Y. Choi, 2016: Improved correction of atmospheric pressure data obtained by smartphones through machine learning. Comput. Intell. Neurosci., 2016, 4, https://doi.org/10.1155/2016/9467878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madaus, L., and C. Mass, 2017: Evaluating smartphone pressure observations for mesoscale analyses and forecasts. Wea. Forecasting, 32, 511531, https://doi.org/10.1175/WAF-D-16-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madaus, L., G. Hakim, and C. Mass, 2014: Utility of dense pressure observations for improving mesoscale analyses and forecasts. Mon. Wea. Rev., 142, 23982413, https://doi.org/10.1175/MWR-D-13-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and L. Madaus, 2014: Surface pressure observations from smartphones: A potential revolution for high-resolution weather prediction? Bull. Amer. Meteor. Soc., 95, 13431349, https://doi.org/10.1175/BAMS-D-13-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNicholas, C., and D. D. Turner, 2014: Characterizing the convective boundary layer turbulence with a high spectral resolution lidar. J. Geophys. Res. Atmos., 119, 12 91012 927, https://doi.org/10.1002/2014JD021867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, F., D. Fenner, T. Grassmann, M. Otto, D. Scherer, 2017: Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170191, https://doi.org/10.1016/j.uclim.2017.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., M. F. Barth, and L. A. Benjamin, 2005: An update on MADIS observation ingest, integration, quality control and distribution capabilities. 21st Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., J7.12, https://ams.confex.com/ams/Annual2005/techprogram/paper_86703.htm.

  • Muller, C. L., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol., 35, 31853203, https://doi.org/10.1002/joc.4210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newzoo, 2017: Top 50 countries by smartphone users and penetration. Newzoo, accessed 28 April 2017, https://newzoo.com/insights/rankings/top-50-countries-by-smartphone-penetration-and-users/.

  • Overeem, A., J. C. R. Robinson, H. Leijnse, G. J. Steeneveld, B. K. P. Horn, and R. Uijlenhoet, 2013: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40, 40814085, https://doi.org/10.1002/grl.50786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429, https://doi.org/10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949, https://doi.org/10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, https://doi.org/10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. ACM’68: Proceedings of the 1968 23rd ACM National Conference, ACM, 517–524, https://doi.org/10.1145/800186.810616.

    • Crossref
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, https://doi.org/10.1175/MWR-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of numerical weather prediction for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D., and D. Stensrud, 2010: The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale system. Mon. Wea. Rev., 138, 16731694, https://doi.org/10.1175/2009MWR3042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 46
PDF Downloads 144 144 40

Smartphone Pressure Collection and Bias Correction Using Machine Learning

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Over half a billion smartphones worldwide are now capable of measuring atmospheric pressure, providing a pressure network of unprecedented density and coverage. This paper describes novel approaches for the collection, quality control, and bias correction of such smartphone pressures. An Android app was developed and distributed to several thousand users, serving as a test bed for onboard pressure collection and quality-control strategies. New methods of pressure collection were evaluated, with a focus on reducing and quantifying sources of observation error and uncertainty. Using a machine learning approach, complex relationships between pressure bias and ancillary sensor data were used to predict and correct future pressure biases over a 4-week period from 10 November to 5 December 2016. This approach, in combination with simple quality-control checks, produced an 82% reduction in the average smartphone pressure bias, substantially improving the quality of smartphone pressures and facilitating their use in numerical weather prediction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Conor McNicholas, cmcnich@uw.edu

Abstract

Over half a billion smartphones worldwide are now capable of measuring atmospheric pressure, providing a pressure network of unprecedented density and coverage. This paper describes novel approaches for the collection, quality control, and bias correction of such smartphone pressures. An Android app was developed and distributed to several thousand users, serving as a test bed for onboard pressure collection and quality-control strategies. New methods of pressure collection were evaluated, with a focus on reducing and quantifying sources of observation error and uncertainty. Using a machine learning approach, complex relationships between pressure bias and ancillary sensor data were used to predict and correct future pressure biases over a 4-week period from 10 November to 5 December 2016. This approach, in combination with simple quality-control checks, produced an 82% reduction in the average smartphone pressure bias, substantially improving the quality of smartphone pressures and facilitating their use in numerical weather prediction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Conor McNicholas, cmcnich@uw.edu
Save