• Adachi, A., T. Kobayashi, and H. Yamauchi, 2015: Estimation of raindrop size distribution and rainfall rate from polarimetric radar measurements at attenuating frequency based on the self-consistency principle. J. Meteor. Soc. Japan, 93, 359388, https://doi.org/10.2151/jmsj.2015-020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J., and O. Bousquet, 2013: Using gap-filler radars in mountainous regions to complement a national radar network: Improvements in multiple-Doppler wind syntheses. J. Appl. Meteor. Climatol., 52, 18361850, https://doi.org/10.1175/JAMC-D-12-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., and W. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour., 51, 357366, https://doi.org/10.1016/j.advwatres.2012.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishman, and D. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., V. Bringi, A. Ryshkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ernsdorf, T., B.-R. Beckman, I. Sölch, A. Augst, M. Hagen, and T. Schubert, 2015: Application of X-band radar and lidar wind measurement at Frankfurt and Munich airports for air traffic management (ATM). 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 284, https://ams.confex.com/ams/37RADAR/webprogram/Paper276619.html.

  • Figueras i Ventura, J., 2009: Design of a high resolution X-band Doppler polarimetric radar. Ph.D. thesis, Delft University of Technology, 162 pp.

  • Giangrande, S., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166, https://doi.org/10.1175/JTECH1766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S., R. McGraw, and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, https://doi.org/10.1175/JTECH-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J., J. Tan, and M. Thurai, 1994: Technique for calibration of meteorological radars using differential phase. Electron. Lett., 30, 166167, https://doi.org/10.1049/el:19940119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., and V. Chandrasekar, 2005: Evaluation of attenuation correction methodology for dual-polarization radars: Application to X-band systems. J. Atmos. Oceanic Technol., 22, 11951206, https://doi.org/10.1175/JTECH1763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1992: Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens., 30, 853858, https://doi.org/10.1109/36.175319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Oceanic Technol., 16, 16901697, https://doi.org/10.1175/1520-0426(1999)016<1690:SDPEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., A. J. Illingworth, and P. Tabary, 2009: Absolute calibration of radar reflectivity using redundancy of the polarization observations and implied constraints on drop shapes. J. Atmos. Oceanic Technol., 26, 689703, https://doi.org/10.1175/2008JTECHA1152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., M. Schneebeli, and A. Berne, 2014: Accuracy of phase-based algorithm for the estimation of the specific differential phase shift using simulated polarimetric weather radar data. IEEE Geosci. Remote Sens. Lett., 11, 763767, https://doi.org/10.1109/LGRS.2013.2278620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and S. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed Phased-Array Radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., L. Liu, L. Wu, and Q. Wei, 2015: A comparison of de-noising methods for differential phase shift and associated rainfall estimation. J. Meteor. Res., 29, 315327, https://doi.org/10.1007/s13351-015-4062-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, 2015: The improvement to the specific differential phase estimation with the modified linear programming method. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 13B.5, https://ams.confex.com/ams/37RADAR/webprogram/Paper275638.html.

  • Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, https://doi.org/10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., and Coauthors, 2010: Precipitation measurement at CESAR, the Netherlands. J. Hydrometeor., 11, 13221329, https://doi.org/10.1175/2010JHM1245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengfeld, K., M. Clemens, C. Merker, H. Münster, and F. Ament, 2016: A simple method for attenuation correction in local X-band radar measurements using C-band radar data. J. Atmos. Oceanic Technol., 33, 23152329, https://doi.org/10.1175/JTECH-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., R. Cifelli, V. Chandrasekar, and S. Y. Matrosov, 2013: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed. J. Atmos. Oceanic Technol., 30, 21082120, https://doi.org/10.1175/jtech-D-12-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., K. Clark, B. Martner, and A. Tokay, 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941952, https://doi.org/10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S- band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, https://doi.org/10.1175/JTECH1887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, https://doi.org/10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa-Rodriguez, S., and Coauthors, 2015: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol., 531, 389407, https://doi.org/10.1016/j.jhydrol.2015.05.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, T., and H. W. J. Russchenberg, 2011: Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geosci. Remote Sens. Lett., 8, 988992, https://doi.org/10.1109/LGRS.2011.2145354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., V. N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 16211632, https://doi.org/10.1175/JTECH1803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, https://doi.org/10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russchenberg, H., T. Otto, R. Reinoso-Rondinel, C. Unal, and J. Yin, 2010: IDRA weather radar measurements—All data. 4TU Centre for Research Data, Delft University of Technology. Subset used: IDRA Processed Data with standard range, accessed 12 October 2012, https://doi.org/10.4121/uuid:5f3bcaa2-a456-4a66-a67b-1eec928cae6d.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor. Climatol., 35, 20802090, https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarchilli, G., E. Gorgucci, V. Chandrasekar, and T. A. Seliga, 1993: Rainfall estimation using polarimetric techniques at C-band frequencies. J. Appl. Meteor. Climatol., 32, 11501160, https://doi.org/10.1175/1520-0450(1993)032<1150:REUPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarchilli, G., E. Gorgucci, V. Chandrasekar, and A. Dobaie, 1996: Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34, 2226, https://doi.org/10.1109/36.481887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schellart, A., W. Shepherd, and A. Saul, 2012: Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale. Adv. Water Resour., 45, 6575, https://doi.org/10.1016/j.advwatres.2011.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., and A. Berne, 2012: An extended Kalman filter framework for polarimetric X-band weather radar data processing. J. Atmos. Oceanic Technol., 29, 711730, https://doi.org/10.1175/JTECH-D-10-05053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., J. Grazioli, and A. Berne, 2014: Improved estimation of the specific differential phase shift using a compilation of Kalman filter ensembles. IEEE Trans. Geosci. Remote Sens., 52, 51375149, https://doi.org/10.1109/TGRS.2013.2287017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J., H. Bluestein, and G. Zhang, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. L. Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trabal, J. M., E. Gorgucci, V. Chandrasekar, and D. J. McLaughlin, 2014: Evaluation of the self-consistency principle for calibration of the CASA radar network using properties of the observed precipitation medium. IEEE Trans. Geosci. Remote Sens., 52, 149162, https://doi.org/10.1109/TGRS.2012.2237406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C., 2009: Spectral polarimetric radar clutter suppression to enhance atmospheric echoes. J. Atmos. Oceanic Technol., 26, 17811797, https://doi.org/10.1175/2009JTECHA1170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676, https://doi.org/10.1175/2010JTECHA1419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 8
PDF Downloads 20 20 8

Adaptive and High-Resolution Estimation of Specific Differential Phase for Polarimetric X-Band Weather Radars

View More View Less
  • 1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands
© Get Permissions
Restricted access

ABSTRACT

One of the most beneficial polarimetric variables may be the specific differential phase KDP because of its independence from power attenuation and radar miscalibration. However, conventional KDP estimation requires a substantial amount of range smoothing as a result of the noisy characteristic of the measured differential phase ΨDP. In addition, the backscatter differential phase δhv component of ΨDP, significant at C- and X-band frequency, may lead to inaccurate KDP estimates. In this work, an adaptive approach is proposed to obtain accurate KDP estimates in rain from noisy ΨDP, whose δhv is of significance, at range resolution scales. This approach uses existing relations between polarimetric variables in rain to filter δhv from ΨDP while maintaining its spatial variability. In addition, the standard deviation of the proposed KDP estimator is mathematically formulated for quality control. The adaptive approach is assessed using four storm events, associated with light and heavy rain, observed by a polarimetric X-band weather radar in the Netherlands. It is shown that this approach is able to retain the spatial variability of the storms at scales of the range resolution. Moreover, the performance of the proposed approach is compared with two different methods. The results of this comparison show that the proposed approach outperforms the other two methods in terms of the correlation between KDP and reflectivity, and KDP standard deviation reduction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Reinoso-Rondinel, r.r.reinosorondinel@tudelft.nl

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-17-0219.1

ABSTRACT

One of the most beneficial polarimetric variables may be the specific differential phase KDP because of its independence from power attenuation and radar miscalibration. However, conventional KDP estimation requires a substantial amount of range smoothing as a result of the noisy characteristic of the measured differential phase ΨDP. In addition, the backscatter differential phase δhv component of ΨDP, significant at C- and X-band frequency, may lead to inaccurate KDP estimates. In this work, an adaptive approach is proposed to obtain accurate KDP estimates in rain from noisy ΨDP, whose δhv is of significance, at range resolution scales. This approach uses existing relations between polarimetric variables in rain to filter δhv from ΨDP while maintaining its spatial variability. In addition, the standard deviation of the proposed KDP estimator is mathematically formulated for quality control. The adaptive approach is assessed using four storm events, associated with light and heavy rain, observed by a polarimetric X-band weather radar in the Netherlands. It is shown that this approach is able to retain the spatial variability of the storms at scales of the range resolution. Moreover, the performance of the proposed approach is compared with two different methods. The results of this comparison show that the proposed approach outperforms the other two methods in terms of the correlation between KDP and reflectivity, and KDP standard deviation reduction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo Reinoso-Rondinel, r.r.reinosorondinel@tudelft.nl

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-17-0219.1

Save