• Al Mamoon, A., and A. Rahman, 2017: Rainfall in Qatar: Is it changing? Nat. Hazards, 85, 453470, https://doi.org/10.1007/s11069-016-2576-6.

  • Bhaskaran, P. K., S. Nayak, S. R. Bonthu, P. N. Murty, and D. Sen, 2013: Performance and validation of a coupled parallel ADCIRC–SWAN model for THANE cyclone in the Bay of Bengal. Environ. Fluid Mech., 13, 601623, https://doi.org/10.1007/s10652-013-9284-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third‐generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bricheno, L. M., A. Soret, J. Wolf, O. Jorba, and J. M. Baldasano, 2013: Effect of high-resolution meteorological forcing on nearshore wave and current model performance. J. Atmos. Oceanic Technol., 30, 10211037, https://doi.org/10.1175/JTECH-D-12-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. S. Santos, 2014: WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy, 117, 116126, https://doi.org/10.1016/j.apenergy.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and L. Bertotti, 1997: In search of the correct wind and wave fields in a minor basin. Mon. Wea. Rev., 125, 19641975, https://doi.org/10.1175/1520-0493(1997)125<1964:ISOTCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaouch, N., M. Temimi, M. Weston, and H. Ghedira, 2017: Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos. Res., 187, 106127, https://doi.org/10.1016/j.atmosres.2016.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20, 812821, https://doi.org/10.1175/WAF885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, https://doi.org/10.1002/we.1555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eager, R. E., S. Raman, A. Wootten, D. L. Westphal, J. S. Reid, and A. Al Mandoos, 2008: A climatological study of the sea and land breezes in the Arabian Gulf region. J. Geophys. Res., 113, https://doi.org/10.1029/2007JD009710.

    • Search Google Scholar
    • Export Citation
  • Elhakeem, A., W. Elshorbagy, and T. Bleninger, 2015: Long-term hydrodynamic modeling of the Arabian Gulf. Mar. Pollut. Bull., 94, 1936, https://doi.org/10.1016/j.marpolbul.2015.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El-Sabh, M. I., and T. S. Murty, 1989: Storm surges in the Arabian Gulf. Nat. Hazards, 1, 371385, https://doi.org/10.1007/BF00134834.

  • Etemad-Shahidi, A., B. Kamranzad, and V. Chegini, 2011: Wave energy estimation in the Persian Gulf. Proc. Int. Conf. on Environmental Pollution and Remediation (ICEPR 2011), Ottawa, Ontario, Canada, International ASET Inc., 223, https://doi.org/10.13140/RG.2.1.1089.6805.

    • Crossref
    • Export Citation
  • Gunwani, P., and M. Mohan, 2017: Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos. Res., 194, 4365, https://doi.org/10.1016/j.atmosres.2017.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamidi, M., M. R. Kavianpour, and Y. Shao, 2014: Numerical simulation of dust events in the Middle East. Aeolian Res., 13, 5970, https://doi.org/10.1016/j.aeolia.2014.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hariprasad, K. B. R. R., C. V. Srinivas, A. B. Singh, S. V. B. Rao, R. Baskaran, and B. Venkatraman, 2014: Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos. Res., 145–146, 2744, https://doi.org/10.1016/j.atmosres.2014.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashem, N., and P. Balakrishnan, 2015: Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar. Ann. GIS, 21, 233247, https://doi.org/10.1080/19475683.2014.992369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaramillo, O. A., and M. A. Borja, 2004: Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29, 16131630, https://doi.org/10.1016/j.renene.2004.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langodan, S., Y. Viswanadhapalli, and I. Hoteit, 2016: The impact of atmospheric data assimilation on wave simulations in the Red Sea. Ocean Eng., 116, 200215, https://doi.org/10.1016/j.oceaneng.2016.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Y. P., and J. M. Kaihatu, 2016: Numerical investigation of wind waves in the Persian Gulf: Bathymetry effects. J. Atmos. Oceanic Technol., 33, 1731, https://doi.org/10.1175/JTECH-D-15-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. W. J. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, https://doi.org/10.1080/014311600210191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madala, S., K. H. Prasad, C. V. Srinivas, and A. N. V. Satyanarayana, 2016: Air quality simulation of NOX over the tropical coastal city Chennai in southern India with FLEXPART-WRF. Atmos. Environ., 128, 6581, https://doi.org/10.1016/j.atmosenv.2015.12.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeini, M. H., A. Etemad-Shahidi, and V. Chegini, 2010: Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Appl. Ocean Res., 32, 209218, https://doi.org/10.1016/j.apor.2009.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., K. P. Volz, and H. Liu, 2013: Forecasting near-surface weather conditions and precipitation in Alaska’s Prince William Sound with the PWS-WRF modeling system. Cont. Shelf Res., 63, S2S12, https://doi.org/10.1016/j.csr.2011.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panchang, V. G., C. K. Jeong, and D. Li, 2008: Wave climatology in coastal Maine for aquaculture and other applications. Estuaries Coasts, 31, 289299, https://doi.org/10.1007/s12237-007-9016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panchang, V. G., C. K. Jeong, and Z. Demirbilek, 2013: Analyses of extreme wave heights in the Gulf of Mexico for offshore engineering applications. J. Offshore Mech. Arctic Eng., 135, 031104, https://doi.org/10.1115/1.4023205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pena Diaz, A., A. N. Hahmann, C. B. Hasager, F. Bingöl, I. Karagali, J. Badger, M. Badger, and N.-E. Clausen, 2011: South Baltic wind atlas: South Baltic offshore wind energy regions project. Denmark Forskningscenter Risø Risø-R-1775, Danmarks Tekniske Universitet Risø Nationallaboratoriet for Bæredygtig Energi, 66 pp.

  • Rao, P. G., H. R. Hatwar, M. H. Al‐Sulaiti, and A. H. Al‐Mulla, 2003: Summer shamals over the Arabian Gulf. Weather, 58, 471478, https://doi.org/10.1002/wea.6080581207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteor., 39, 412426, https://doi.org/10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., 2008: Physics and Modelling of Wind Erosion. Atmospheric and Oceanographic Sciences Library, Vol. 37, Springer Science & Business Media, 456 pp., https://doi.org/10.1007/978-1-4020-8895-7.

    • Crossref
    • Export Citation
  • Signell, R. P., S. Carniel, L. Cavaleri, J. Chiggiato, J. D. Doyle, J. Pullen, and M. Sclavo, 2005: Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J. Mar. Syst., 53, 217233, https://doi.org/10.1016/j.jmarsys.2004.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singha, A., and R. Sadr, 2012: Characteristics of surface layer turbulence in coastal area of Qatar. Environ. Fluid Mech., 12, 515531, https://doi.org/10.1007/s10652-012-9242-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singhal, G., V. G. Panchang, and J. L. Lillibridge, 2010: Reliability assessment for operational wave forecasting system in Prince William Sound, Alaska. J. Waterw. Port Coastal Ocean Eng., 136, 337349, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., http://dx.doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

    • Crossref
    • Export Citation
  • Viswanadhapalli, Y., H. P. Dasari, S. Langodan, V. S. Challa, and I. Hoteit, 2017: Climatic features of the Red Sea from a regional assimilative model. Int. J. Climatol., 37, 25632581, https://doi.org/10.1002/joc.4865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, O. V. Kalashnikova, and M. J. Garay, 2016: Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos., 121, 289305, https://doi.org/10.1002/2015JD024063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., and B. W. Atkinson, 2004: Observed and modeled climatology of the land–sea breeze circulation over the Persian Gulf. Int. J. Climatol., 24, 883905, https://doi.org/10.1002/joc.1045.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 22
PDF Downloads 62 62 22

Performance of the WRF Model for Surface Wind Prediction around Qatar

View More View Less
  • 1 Mechanical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
  • 2 Mechanical Engineering Program, Texas A&M University at Qatar, Doha, Qatar, and Department of Ocean Engineering, Texas A&M University, College Station, Texas
  • 3 Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
  • 4 Qatar Meteorological Department, Doha, Qatar
  • 5 Zachary Department of Civil Engineering, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

The performance of the Weather Research and Forecasting (WRF) Model is examined for the region around Qatar in the context of surface winds. The wind fields around this peninsula can be complicated owing to its small size, to a complex pattern of land and sea breezes influenced by the prevailing shamal winds, and to its dry and arid nature. Modeled winds are verified with data from 19 land stations and two offshore buoys. A comparison with these data shows that nonlocal planetary boundary layer (PBL) schemes generally perform better than local schemes over land stations during the daytime, when convective conditions prevail; at nighttime, over land and over water, both schemes yield similar results. Among other parameters, modifications to standard USGS land-use descriptors were necessary to reduce model errors. The RMSE values are comparable to those reported elsewhere. Simulated winds, when used with a wave model, result in wave heights comparable to buoy measurements. Furthermore, WRF results, confirmed by data, show that at times sea breezes develop from both coasts, leading to convergence in the middle of the country; at other times, the large-scale wind impedes the formation of sea breezes on one or both coasts. Simulations also indicate greater land/sea-breeze activity in the summer than in the winter. Differences in the diurnal evolution of surface winds over land and water are found to be related to differences in the boundary layer stability. Overall, the results indicate that the WRF Model as configured here yields reliable simulations and can be used for various practical applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: B. S. Sandeepan, sandeepan.bs@qatar.tamu.edu

Abstract

The performance of the Weather Research and Forecasting (WRF) Model is examined for the region around Qatar in the context of surface winds. The wind fields around this peninsula can be complicated owing to its small size, to a complex pattern of land and sea breezes influenced by the prevailing shamal winds, and to its dry and arid nature. Modeled winds are verified with data from 19 land stations and two offshore buoys. A comparison with these data shows that nonlocal planetary boundary layer (PBL) schemes generally perform better than local schemes over land stations during the daytime, when convective conditions prevail; at nighttime, over land and over water, both schemes yield similar results. Among other parameters, modifications to standard USGS land-use descriptors were necessary to reduce model errors. The RMSE values are comparable to those reported elsewhere. Simulated winds, when used with a wave model, result in wave heights comparable to buoy measurements. Furthermore, WRF results, confirmed by data, show that at times sea breezes develop from both coasts, leading to convergence in the middle of the country; at other times, the large-scale wind impedes the formation of sea breezes on one or both coasts. Simulations also indicate greater land/sea-breeze activity in the summer than in the winter. Differences in the diurnal evolution of surface winds over land and water are found to be related to differences in the boundary layer stability. Overall, the results indicate that the WRF Model as configured here yields reliable simulations and can be used for various practical applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: B. S. Sandeepan, sandeepan.bs@qatar.tamu.edu
Save