• Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H., and A. Ruzmaikin, 2013: Frequency of deep convective clouds in the tropical zone from 10 years of AIRS data. Atmos. Chem. Phys., 13, 10 79510 806, https://doi.org/10.5194/acp-13-10795-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bani Shahabadi, M., and Y. Huang, 2014: Measuring stratospheric H2O with an airborne spectrometer. J. Atmos. Oceanic Technol., 31, 15021515, https://doi.org/10.1175/JTECH-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beer, R., T. A. Glavich, and D. M. Rider, 2001: Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt., 40, 23562367, https://doi.org/10.1364/AO.40.002356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berk, A., and Coauthors, 2005: MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, S. S. Shen and P. E. Lewis, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 5806), 662–667, https://doi.org/10.1117/12.606026.

    • Crossref
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A., E. Hintsa, E. Weinstock, J. Anderson, and K. Chan, 1995: Mechanisms controlling water vapor in the lower stratosphere: “A tale of two stratospheres.” J. Geophys. Res., 100, 23 16723 172, https://doi.org/10.1029/95JD02455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvortsov, V. L., and S. Solomon, 2001: Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J. Geophys. Res., 106, 75057514, https://doi.org/10.1029/2000JD900637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and Coauthors, 2008: Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res., 113, D22110, https://doi.org/10.1029/2008JD010000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2004: Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys. Res. Lett., 31, L22107, https://doi.org/10.1029/2004GL020730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosvenor, D., T. Choularton, H. Coe, and G. Held, 2007: A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations. Atmos. Chem. Phys., 7, 49775002, https://doi.org/10.5194/acp-7-4977-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Bani Shahabadi, 2014: Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos., 119, 13 68313 689, https://doi.org/10.1002/2014JD022466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., M. Zhang, Y. Xia, Y. Hu, and S.-W. Son, 2016: Is there a stratospheric radiative feedback in global warming simulations? Climate Dyn., 46, 177186, https://doi.org/10.1007/s00382-015-2577-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irion, F. W., and Coauthors, 2018: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmos. Meas. Tech., 11, 971995, https://doi.org/10.5194/amt-11-971-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112, D24S35, https://doi.org/10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Vol. 2, World Scientific Publishing, 238 pp.

    • Crossref
    • Export Citation
  • Schoeberl, M., A. Dessler, and T. Wang, 2012: Simulation of stratospheric water vapor and trends using three reanalyses. Atmos. Chem. Phys., 12, 64756487, https://doi.org/10.5194/acp-12-6475-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney, 2013: Convectively injected water vapor in the North American summer lowermost stratosphere. Geophys. Res. Lett., 40, 23162321, https://doi.org/10.1002/grl.50421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. B., 2012: The sources and significance of stratospheric water vapor: Mechanistic studies from equator to pole. Ph.D. thesis, Harvard University, 363 pp.

  • Sun, Y., and Y. Huang, 2015: An examination of convective moistening of the lower stratosphere using satellite data. Earth Space Sci., 2, 320330, https://doi.org/10.1002/2015EA000115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita, 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS Science Team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, https://doi.org/10.1109/TGRS.2010.2070508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinstock, E., and Coauthors, 2009: Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor. J. Geophys. Res., 114, D23301, https://doi.org/10.1029/2009JD012427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, https://doi.org/10.1175/BAMS-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, M. Schreier, G. Manipon, E. F. Fishbein, B. H. Kahn, Q. Yue, and F. W. Irion, 2015: Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity. J. Geophys. Res. Atmos., 120, 18801901, https://doi.org/10.1002/2014JD022440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 18
PDF Downloads 36 36 10

Cloud-Assisted Retrieval of Lower-Stratospheric Water Vapor from Nadir-View Satellite Measurements

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

This study examines the feasibility of retrieving lower-stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution, and noise level, contain considerable information content that can be used to retrieve lower-stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower-stratospheric water vapor concentration—for instance, caused by convective moistening—can be detected with an accuracy of 0.09 g m−2 using improved spaceborne hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration caused by convective moistening.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Feng, jing.feng3@mail.mcgill.ca

Abstract

This study examines the feasibility of retrieving lower-stratospheric water vapor using a nadir infrared hyperspectrometer, with the focus on the detectability of small-scale water vapor variability. The feasibility of the retrieval is examined using simulation experiments that model different instrument settings. These experiments show that the infrared spectra, measured with sufficient spectral coverage, resolution, and noise level, contain considerable information content that can be used to retrieve lower-stratospheric water vapor. Interestingly, it is found that the presence of an opaque cloud layer at the tropopause level can substantially improve the retrieval performance, as it helps remove the degeneracy in the retrieval problem. Under this condition, elevated lower-stratospheric water vapor concentration—for instance, caused by convective moistening—can be detected with an accuracy of 0.09 g m−2 using improved spaceborne hyperspectrometers. The cloud-assisted retrieval is tested using the measurements of the Atmospheric Infrared Sounder (AIRS). Validation against collocated aircraft data shows that the retrieval can detect the elevated water vapor concentration caused by convective moistening.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Feng, jing.feng3@mail.mcgill.ca
Save