• American Meteorological Society, 2017: Atmospheric boundary layer. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Atmospheric_boundary_layer.

  • Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68, 375385, https://doi.org/10.1007/BF00706797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., and I. N. Smalikho, 2016: Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal. Atmos. Meas. Tech., 9, 52395248, https://doi.org/10.5194/amt-9-5239-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano, 2015: Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting model at an urban coastal site in the north-east Iberian Peninsula. Bound.-Layer Meteor., 157, 265292, https://doi.org/10.1007/s10546-015-0056-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., T. M. Dunbar, E. G. Nemitz, C. R. Wood, M. W. Gallagher, F. Davies, E. O’Connor, and R. M. Harrison, 2011: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys., 11, 21112125, https://doi.org/10.5194/acp-11-2111-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmonte, A., and B. J. Rye, 2000: Heterodyne lidar returns in the turbulent atmosphere: Performance evaluation of simulated systems. Appl. Opt., 39, 24012411, https://doi.org/10.1364/AO.39.002401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413953, https://doi.org/10.1016/S1352-2310(97)00231-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, https://doi.org/10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon, 2014: Countergradient heat flux observations during the evening transition period. Atmos. Chem. Phys., 14, 90779085, https://doi.org/10.5194/acp-14-9077-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. Blumberg, P. Klein, and P. Chilson, 2015: Thermodynamic and turbulence characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., J. F. Newman, P. M. Klein, P. B. Chilson, and S. Wharton, 2016: Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations. Atmos. Meas. Tech., 9, 58335852, https://doi.org/10.5194/amt-9-5833-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., and Coauthors, 2017: Evaluation of turbulence measurement techniques from a single Doppler lidar. Atmos. Meas. Tech., 10, 30213039, https://doi.org/10.5194/amt-10-3021-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 10921105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, M. Xue, and K. Fanyou, 2014: Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, https://doi.org/10.1175/MWR-D-13-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U. S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, https://doi.org/10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosson, E. R., 2008: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys., 92B, 403408, https://doi.org/10.1007/s00340-008-3135-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17, 14551468, https://doi.org/10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., and Coauthors, 2017: The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements. Elementa Sci. Anthropocene, 5, 21, https://doi.org/10.1525/elementa.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Bruine, M., A. Apituley, D. P. Donovan, H. K. Baltink, and M. J. D. Haij, 2017: Pathfinder: Applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar. Atmos. Meas. Tech., 10, 18931909, https://doi.org/10.5194/amt-10-1893-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberhard, W. L., R. E. Cupp, and K. R. Healy, 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6, 809819, https://doi.org/10.1175/1520-0426(1989)006<0809:DLMOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J. Atmos. Sci., 41, 24092436, https://doi.org/10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and M. J. Kavaya, 1991: Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30, 53255352, https://doi.org/10.1364/AO.30.005325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11, 12171230, https://doi.org/10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. P. du Chatelet, 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 14391451, https://doi.org/10.1175/JTECH2035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393, https://doi.org/10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haar, A., 1910: Zur Theorie der Orthogonalen Funktionensysteme. Math. Ann., 69, 331371, https://doi.org/10.1007/BF01456326.

  • Haeffelin, M., and Coauthors, 2012: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 4975, https://doi.org/10.1007/s10546-011-9643-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimburger, A. M. F., and Coauthors, 2017: Assessing the optimized precision of the aircraft mass balance method for measurement of urban greenhouse gas emission rates through averaging. Elementa Sci. Anthropoce, 5, 26, https://doi.org/10.1525/elementa.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., and A. Lammert, 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181200, https://doi.org/10.1007/s10546-005-9035-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643, https://doi.org/10.1002/qj.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, B. C., and Coauthors, 2015: Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens., 81, 345354.

    • Search Google Scholar
    • Export Citation
  • Hooper, W. P., and E. W. Eloranta, 1986: Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon. J. Climate Appl. Meteor., 25, 9901001, https://doi.org/10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, M., Z. Gao, S. Miao, F. Chen, M. A. Lemone, J. Li, F. Hu, and L. Wang, 2017: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound.-Layer Meteor., 162, 503522, https://doi.org/10.1007/s10546-016-0205-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joffre, S. M., M. Kangas, M. Heikinheimo, and S. A. Kitaigorodskii, 2001: Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Bound.-Layer Meteor., 99, 429450, https://doi.org/10.1023/A:1018956525605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Chagnon, B. C. Reinke, and R. W. Arritt, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 15071518, https://doi.org/10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauvaux, T., and K. J. Davis, 2014: Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 measurements. J. Geophys. Res. Atmos., 119, 490508, https://doi.org/10.1002/2013JD020175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., V. Wulfmeyer, and C. Senff, 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347, https://doi.org/10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and C. A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res., 108, 4493, https://doi.org/10.1029/2002JD003161.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, R., and Coauthors, 2015: Atmospheric transport and chemistry of trace gases in LMDz5B: Evaluation and implications for inverse modelling. Geosci. Model Dev., 8, 129150, https://doi.org/10.5194/gmd-8-129-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor. Climatol., 53, 20172033, https://doi.org/10.1175/JAMC-D-13-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, and D. Stauffer, 2015: Dependence of turbulent velocities on wind speed and stratification. Bound.-Layer Meteor., 155, 5571, https://doi.org/10.1007/s10546-014-9992-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendel, J. M., 1995: Fuzzy logic systems for engineering: A tutorial. Proc. IEEE, 83, 345377, https://doi.org/10.1109/5.364485.

  • Menut, L., C. Flamant, J. Pelon, and P. H. Flamant, 1999: Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945954, https://doi.org/10.1364/AO.38.000945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, https://doi.org/10.1007/s10546-006-9103-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, https://doi.org/10.1175/2008JTECHA1128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climatol., 49, 2035, https://doi.org/10.1175/2009JAMC2168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., R. M. Banta, N. D. Kelley, B. J. Jonkman, S. C. Tucker, R. K. Newsom, and W. A. Brewer, 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327, https://doi.org/10.1175/2008JTECHA988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, M. J., and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc., 67, 274281, https://doi.org/10.1175/1520-0477(1986)067<0274:DLMOWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, T., T. Shibata, S.-A. Kwon, Y.-S. Kim, K. Tamura, and Y. Iwasaka, 2000: Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994–1997: Contributions of aerosols from the Asian Continent and the Pacific Ocean. Atmos. Environ., 34, 431442, https://doi.org/10.1016/S1352-2310(99)00328-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schween, J. H., A. Hirsikko, U. Löhnert, and S. Crewell, 2014: Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech., 7, 36853704, https://doi.org/10.5194/amt-7-3685-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, https://doi.org/10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and A. G. M. Driedonks, 1981: Basic entrainment equations for the atmospheric boundary layer. Bound.-Layer Meteor., 20, 515531, https://doi.org/10.1007/BF00122299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. M. Weickmann, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, https://doi.org/10.1175/2008JTECHA1157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vakkari, V., E. J. O. Connor, A. Nisantzi, R. E. Mamouri, and D. G. Hadjimitsis, 2015: Low-level mixing height detection in coastal locations with a scanning Doppler lidar. Atmos. Meas. Tech., 8, 18751885, https://doi.org/10.5194/amt-8-1875-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, S., C. Yagüe, and G. Maqueda, 2009: Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign. Bound.-Layer Meteor., 133, 165188, https://doi.org/10.1007/s10546-009-9420-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 39493966, https://doi.org/10.1175/2010JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20, 660672, https://doi.org/10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 17361749, https://doi.org/10.1175/JAM2160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., X. Chen, and Y. Qi, 2013: Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res. Atmos., 118, 18961905, https://doi.org/10.1002/jgrd.50214.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 30
PDF Downloads 88 88 32

Doppler Lidar Observations of the Mixing Height in Indianapolis Using an Automated Composite Fuzzy Logic Approach

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
  • 2 Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder, Colorado
  • 3 Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland
  • 4 Joint Center for Earth Systems Technology, Baltimore, Maryland
  • 5 Department of Chemistry, Purdue University, West Lafayette, Indiana
  • 6 Department of Earth, Atmospheric, and Planetary Sciences, and Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

A Halo Photonics Stream Line XR Doppler lidar has been deployed for the Indianapolis Flux Experiment (INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and autonomously, a novel composite fuzzy logic approach has been developed that combines information from various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified measurement of the mixing height and its uncertainty. The composite approach uses the strengths of each measurement strategy to overcome the limitations of others so that a complete representation of turbulent mixing is made in the lowest km, depending on clouds and aerosol distribution. Additionally, submeso nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can lead to an overestimate of the mixing height. The mixing height is compared with in situ profile measurements from a research aircraft for validation. To demonstrate the utility of the measurements, statistics of the mixing height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured, with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, respectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning and decaying more rapidly in the evening with lighter winds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy A. Bonin, timothy.bonin@noaa.gov

Abstract

A Halo Photonics Stream Line XR Doppler lidar has been deployed for the Indianapolis Flux Experiment (INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and autonomously, a novel composite fuzzy logic approach has been developed that combines information from various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified measurement of the mixing height and its uncertainty. The composite approach uses the strengths of each measurement strategy to overcome the limitations of others so that a complete representation of turbulent mixing is made in the lowest km, depending on clouds and aerosol distribution. Additionally, submeso nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can lead to an overestimate of the mixing height. The mixing height is compared with in situ profile measurements from a research aircraft for validation. To demonstrate the utility of the measurements, statistics of the mixing height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured, with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, respectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning and decaying more rapidly in the evening with lighter winds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy A. Bonin, timothy.bonin@noaa.gov
Save