Assessment of Doppler Radar Radial Wind Observation Quality from Different Echo Sources for Assimilation during the Sydney 2014 Forecast Demonstration Project

Susan Rennie Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Susan Rennie in
Current site
Google Scholar
PubMed
Close
,
Peter Steinle Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Peter Steinle in
Current site
Google Scholar
PubMed
Close
,
Alan Seed Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alan Seed in
Current site
Google Scholar
PubMed
Close
,
Mark Curtis Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Mark Curtis in
Current site
Google Scholar
PubMed
Close
, and
Yi Xiao Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Yi Xiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new quality control system, primarily using a naïve Bayesian classifier, has been developed to enable the assimilation of radial velocity observations from Doppler radar. The ultimate assessment of this system is the assimilation of observations in a pseudo-operational numerical weather prediction system during the Sydney 2014 Forecast Demonstration Project. A statistical analysis of the observations assimilated during this period provides an assessment of the data quality. This will influence how observations will be assimilated in the future, and what quality control and errors are applicable. This study compares observation-minus-background statistics for radial velocities from precipitation and insect echoes. The results show that with the applied level of quality control, these echo types have comparable biases. With the latest quality control, the clear air observations of wind are apparently of similar quality to those from precipitation and are therefore suitable for use in high-resolution NWP assimilation systems.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan Rennie, susan.rennie@bom.gov.au

Abstract

A new quality control system, primarily using a naïve Bayesian classifier, has been developed to enable the assimilation of radial velocity observations from Doppler radar. The ultimate assessment of this system is the assimilation of observations in a pseudo-operational numerical weather prediction system during the Sydney 2014 Forecast Demonstration Project. A statistical analysis of the observations assimilated during this period provides an assessment of the data quality. This will influence how observations will be assimilated in the future, and what quality control and errors are applicable. This study compares observation-minus-background statistics for radial velocities from precipitation and insect echoes. The results show that with the applied level of quality control, these echo types have comparable biases. With the latest quality control, the clear air observations of wind are apparently of similar quality to those from precipitation and are therefore suitable for use in high-resolution NWP assimilation systems.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan Rennie, susan.rennie@bom.gov.au
Save
  • Achtemeier, G. L., 1991: The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar. J. Atmos. Oceanic Technol., 8, 746765, https://doi.org/10.1175/1520-0426(1991)008<0746:TUOIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aralimarad, P., A. M. Reynolds, K. S. Lim, D. R. Reynolds, and J. W. Chapman, 2011: Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim. Behav., 82, 12211225, https://doi.org/10.1016/j.anbehav.2011.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., J. C. Nicol, J. H. Marsham, P. Rogberg, and E. G. Norton, 2011: Layers of insect echoes near a thunderstorm and implications for the interpretation of radar data in terms of airflow. Quart. J. Roy. Meteor. Soc., 137, 723735, https://doi.org/10.1002/qj.800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, J. W., D. R. Reynolds, H. Mouritsen, J. K. Hill, J. R. Riley, D. Sivell, A. D. Smith, and I. P. Woiwod, 2008: Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol., 18, 514518, https://doi.org/10.1016/j.cub.2008.02.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, J. W., R. L. Nesbit, L. E. Burgin, D. R. Reynolds, A. D. Smith, D. R. Middleton, and J. K. Hill, 2010: Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science, 327, 682685, https://doi.org/10.1126/science.1182990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., 1983: Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): A radar study. Bull. Entomol. Res., 73, 679692, https://doi.org/10.1017/S0007485300009287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., 1985: Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Entomol., 10, 259265, https://doi.org/10.1111/j.1365-2311.1985.tb00722.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., and R. Farrow, 1983: The nocturnal migration of the Australian plague locust, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): Quantitative radar observations of a series of northward flights. Bull. Entomol. Res., 73, 567585, https://doi.org/10.1017/S0007485300009172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., and R. Farrow, 1988: The influence of atmospheric structure and motions on insect migration. Ann. Rev. Entomol., 33, 183210, https://doi.org/10.1146/annurev.en.33.010188.001151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., K. Helm, J. Readshaw, and D. Reid, 1981: Insect migration across Bass Strait during spring: A radar study. Bull. Entomol. Res., 71, 449466, https://doi.org/10.1017/S0007485300008476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2010: Radial velocity measurement simulations: Common errors, approximations, or omissions and their impact on estimation accuracy. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD, 138–144, http://erad2010.com/pdf/oral/thursday/nwp1/02_ERAD2010_0154.pdf.

  • Gregg, P., G. Fitt, M. Coombs, and G. Henderson, 1993: Migrating moths (Lepidoptera) collected in tower-mounted light-traps in northern New South Wales, Australia: Species composition and seasonal abundance. Bull. Entomol. Res., 83, 563578, https://doi.org/10.1017/S0007485300039997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannesen, R., S. Kauczok, and A. Weipert, 2014: Quality of clear-air radar radial velocity data: Do insects matter? Proc. Eighth European Conf. on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, ERAD, 13.2, http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/055_Hannesen.pdf.

  • Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111136, https://doi.org/10.3402/tellusa.v38i2.11707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindskog, M., K. Salonen, H. Järvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132, 10811092, https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods: Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114, 205239, https://doi.org/10.1002/qj.49711447911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, D., R. Lewandowski, M. Szewczykowski, and H. Beekhuis, 2011: EUMETNET OPERA weather radar information model for implementation with the HDF5 file format. Version 2.1, EUMETNET Working Doc. WD_2008_03, 36 pp.

  • Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 19391953, https://doi.org/10.1175/2008MWR2725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ośrodka, K., J. Szturc, and A. Jurczyk, 2014: Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system). Meteor. Appl., 21, 256270, https://doi.org/10.1002/met.1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013:Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteor. Oceanogr. J., 63, 265284.

  • Rennie, S. J., 2014: Common orientation and layering of migrating insects in south-eastern Australia observed with a Doppler weather radar. Meteor. Appl., 21, 218229, https://doi.org/10.1002/met.1378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., A. J. Illingworth, and S. L. Dance, 2010a: On differentiating ground clutter and insect echoes from Doppler weather radars using archived data. Atmos. Meas. Tech. Discuss., 3, 18431860, https://doi.org/10.5194/amtd-3-1843-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., A. J. Illingworth, S. L. Dance, and S. P. Ballard, 2010b: The accuracy of Doppler radar wind retrievals using insects as targets. Meteor. Appl., 17, 419432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., M. Curtis, J. Peter, A. W. Seed, P. J. Steinle, and G. Wen, 2015: Bayesian echo classification for Australian single-polarization weather radar with application to assimilation of radial velocity observations. J. Atmos. Oceanic Technol., 32, 13411355, https://doi.org/10.1175/JTECH-D-14-00206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, A. M., D. R. Reynolds, A. D. Smith, and J. W. Chapman, 2010: A single wind-mediated mechanism explains high-altitude “non-goal oriented” headings and layering of nocturnally migrating insects. Proc. Roy. Soc. London, 277B, 765772, https://doi.org/10.1098/rspb.2009.1221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rihan, F. A., C. G. Collier, S. P. Ballard, and S. Swarbrick, 2008: Assimilation of Doppler radial winds into a 3D-Var system: Errors and impact of radial velocities on the variational analysis and model forecasts. Quart. J. Roy. Meteor. Soc., 134, 17011716, https://doi.org/10.1002/qj.326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. R., and D. R. Reynolds, 1986: Orientation at night by high-flying insects. Insect Flight: Dispersal and Migration, W. Danthanarayana, Ed., Proceedings in Life Sciences, Springer, 71–87, https://doi.org/10.1007/978-3-642-71155-8_6.

    • Crossref
    • Export Citation
  • Salonen, K., H. Järvinen, R. Eresmaa, and S. Niemelä, 2007: Bias estimation of Doppler-radar radial-wind observations. Quart. J. Roy. Meteor. Soc., 133, 15011507, https://doi.org/10.1002/qj.114.

    • Search Google Scholar
    • Export Citation
  • Salonen, K., G. Haase, R. Eresmaa, H. Hohti, and H. Järvinen, 2011: Towards the operational use of Doppler radar radial winds in HIRLAM. Atmos. Res., 100, 190200, https://doi.org/10.1016/j.atmosres.2010.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, D., S. P. Ballard, and Z. Li, 2014: Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for Nowcasting. Quart. J. Roy. Meteor. Soc., 140, 22982314, https://doi.org/10.1002/qj.2298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016: Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon. Wea. Rev., 144, 35333551, https://doi.org/10.1175/MWR-D-15-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2008: Doppler radar data assimilation in KMA’s operational forecasting. Bull. Amer. Meteor. Soc., 89, 3943, https://doi.org/10.1175/BAMS-89-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., K. Nai, and L. Wei, 2007: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133, 407415, https://doi.org/10.1002/qj.21.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 87 8
PDF Downloads 298 62 3