Depth-Average Velocity from Spray Underwater Gliders

Daniel L. Rudnick Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Daniel L. Rudnick in
Current site
Google Scholar
PubMed
Close
,
Jeffrey T. Sherman Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Jeffrey T. Sherman in
Current site
Google Scholar
PubMed
Close
, and
Alexander P. Wu Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Alexander P. Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The depth-average velocity is routinely calculated using data from underwater gliders. The calculation is a dead reckoning, where the difference between the glider’s velocity over ground and its velocity through water yields the water velocity averaged over the glider’s dive path. Given the accuracy of global positioning system navigation and the typical 3–6-h dive cycle, the accuracy of the depth-average velocity is overwhelmingly dependent on the accurate estimation of the glider’s velocity through water. The calculation of glider velocity through water for the Spray underwater glider is described. The accuracy of this calculation is addressed using a method similar to that used with shipboard acoustic Doppler current profilers, where water velocity is compared before and after turns to determine a gain to apply to glider velocity through water. Differences of this gain from an ideal value of one are used to evaluate accuracy. Sustained glider observations of several years off California and Palau consisted of missions involving repeated straight sections, producing hundreds of turns. The root-mean-square accuracy of depth-average velocity is estimated to be in the range of 0.01–0.02 m s−1, consistent with inferences from the early days of underwater glider design.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel L. Rudnick, drudnick@ucsd.edu

Abstract

The depth-average velocity is routinely calculated using data from underwater gliders. The calculation is a dead reckoning, where the difference between the glider’s velocity over ground and its velocity through water yields the water velocity averaged over the glider’s dive path. Given the accuracy of global positioning system navigation and the typical 3–6-h dive cycle, the accuracy of the depth-average velocity is overwhelmingly dependent on the accurate estimation of the glider’s velocity through water. The calculation of glider velocity through water for the Spray underwater glider is described. The accuracy of this calculation is addressed using a method similar to that used with shipboard acoustic Doppler current profilers, where water velocity is compared before and after turns to determine a gain to apply to glider velocity through water. Differences of this gain from an ideal value of one are used to evaluate accuracy. Sustained glider observations of several years off California and Palau consisted of missions involving repeated straight sections, producing hundreds of turns. The root-mean-square accuracy of depth-average velocity is estimated to be in the range of 0.01–0.02 m s−1, consistent with inferences from the early days of underwater glider design.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel L. Rudnick, drudnick@ucsd.edu
Save
  • Davis, R. E., C. C. Eriksen, and C. P. Jones, 2003: Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis, 37–58.

    • Crossref
    • Export Citation
  • DoD, 2008: Global Positioning System Standard Positioning Service performance standard. 4th ed. U.S. Department of Defense Doc., 160 pp.

  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, https://doi.org/10.1109/48.972073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and R. C. Millard, 1983: Algorithms for computations of fundamental properties of seawater. UNESCO Tech. Papers in Marine Science 44, 53 pp.

  • Giles, A. B., and T. J. McDougall, 1986: Two methods for the reduction of salinity spiking of CTDs. Deep-Sea Res., 33A, 12531274, https://doi.org/10.1016/0198-0149(86)90023-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, S. A., and Coauthors, 2003: Underwater glider system study. University of California, San Diego, Scripps Institution of Oceanography, 242 pp., https://escholarship.org/uc/item/1c28t6bb.

  • Joyce, T. M., 1989: On in situ “calibration” of shipboard ADCPs. J. Atmos. Oceanic Technol., 6, 169172, https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and J. J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, 756768, https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., D. Smeed, and G. Griffiths, 2010: Vertical water velocities from underwater gliders. J. Atmos. Oceanic Technol., 27, 547563, https://doi.org/10.1175/2009JTECHO710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Andersen, N. Larson, E. D’Asaro, and T. Boyd, 1994: The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 11511164, https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, J., 1989: A practical determination of CTD platinum resistance thermometer response time, and its use to correct salinity bias and spikes. Deep-Sea Res., 36A, 139148, https://doi.org/10.1016/0198-0149(89)90023-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R., and J. Read, 1989: A method for calibrating shipmounted acoustic Doppler profilers and the limitations of gyro compasses. J. Atmos. Oceanic Technol., 6, 859865, https://doi.org/10.1175/1520-0426(1989)006<0859:AMFCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, https://doi.org/10.1146/annurev-marine-122414-033913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and J. R. Luyten, 1996: Intensive surveys of the Azores Front. 1. Tracers and dynamics. J. Geophys. Res., 101, 923939, https://doi.org/10.1029/95JC02867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, https://doi.org/10.4031/002533204787522703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., T. M. S. Johnston, and J. T. Sherman, 2013: High-frequency internal waves near the Luzon Strait observed by underwater gliders. J. Geophys. Res. Oceans, 118, 774784, https://doi.org/10.1002/jgrc.20083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, and J. T. Sherman, 2016: Spray underwater glider operations. J. Atmos. Oceanic Technol., 33, 11131122, https://doi.org/10.1175/JTECH-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., K. D. Zaba, R. E. Todd, and R. E. Davis, 2017: A climatology of the California Current System from a network of underwater gliders. Prog. Oceanogr., 154, 64106, https://doi.org/10.1016/j.pocean.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, https://doi.org/10.1109/48.972076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, and R. E. Davis, 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, https://doi.org/10.1029/2008JC005086.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, https://doi.org/10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, J. T. Sherman, W. B. Owens, and L. George, 2017: Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. J. Atmos. Oceanic Technol., 34, 309333, https://doi.org/10.1175/JTECH-D-16-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1160 297 29
PDF Downloads 887 207 13