Convective Boundary Layer Depth Estimation from S-Band Dual-Polarization Radar

John R. Banghoff Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by John R. Banghoff in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. Kumjian Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates Bragg scatter signatures in dual-polarization radar observations, which are defined by low differential reflectivity values, as a proxy for convective boundary layer (CBL) depth. Using data from the WSR-88D in Twin Lakes, Oklahoma (KTLX), local minima in quasi-vertical profiles of are found to provide a reasonable estimate of CBL depth when compared with depth estimates from upper-air soundings from Norman, Oklahoma (KOUN), during 2014. The 243 Bragg scatter and upper-air sounding CBL depth estimates have a correlation of 0.90 and an RMSE of 254 m. Using Bragg scatter as a proxy for CBL depth was expanded to other seasons and locations—performing well in Wilmington, Ohio; Fairbanks, Alaska; Tucson, Arizona; Minneapolis, Minnesota; Albany, New York; Portland, Oregon; and Tampa, Florida—showing its potential usefulness in monitoring CBL depth throughout the year in a variety of geographic locations and meteorological conditions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Banghoff, jxb645@psu.edu

Abstract

This study investigates Bragg scatter signatures in dual-polarization radar observations, which are defined by low differential reflectivity values, as a proxy for convective boundary layer (CBL) depth. Using data from the WSR-88D in Twin Lakes, Oklahoma (KTLX), local minima in quasi-vertical profiles of are found to provide a reasonable estimate of CBL depth when compared with depth estimates from upper-air soundings from Norman, Oklahoma (KOUN), during 2014. The 243 Bragg scatter and upper-air sounding CBL depth estimates have a correlation of 0.90 and an RMSE of 254 m. Using Bragg scatter as a proxy for CBL depth was expanded to other seasons and locations—performing well in Wilmington, Ohio; Fairbanks, Alaska; Tucson, Arizona; Minneapolis, Minnesota; Albany, New York; Portland, Oregon; and Tampa, Florida—showing its potential usefulness in monitoring CBL depth throughout the year in a variety of geographic locations and meteorological conditions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Banghoff, jxb645@psu.edu
Save
  • Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68, 375385, https://doi.org/10.1007/BF00706797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., J. M. Wilczak, and A. B. White, 2008: Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations. J. Atmos. Oceanic Technol., 25, 13971413, https://doi.org/10.1175/2008JTECHA981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99114, https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2007: Observing the dynamics of wildland grass fires: FireFlux–A field validation experiment. Bull. Amer. Meteor. Soc., 88, 13691382, https://doi.org/10.1175/BAMS-88-9-1369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2004: Meteorological research needs for improved air quality forecasting: Report of the 11th Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 85, 563586, https://doi.org/10.1175/BAMS-85-4-563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demoz, B., K. Vermeesch, M. Hicks, D. Atkinson, R. Delgado, and R. K. Sakai, 2017: Towards a ceilometer-lidar network in ASOS: Progress, problems, and prospects. Observation Symposium: Progress, Problems, and Prospects, Seattle, WA, Amer. Meteor. Soc., 1010, https://ams.confex.com/ams/97Annual/webprogram/Paper311707.html.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Elmore, K. L., P. L. Heinselman, and D. J. Stensrud, 2012: Using WSR-88D data and insolation estimates to determine convective boundary layer depth. J. Atmos. Oceanic Technol., 29, 581588, https://doi.org/10.1175/JTECH-D-11-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 1998: Convective boundary layer height measurement with wind profilers and comparison to cloud base. J. Atmos. Oceanic Technol., 15, 13311338, https://doi.org/10.1175/1520-0426(1998)015<1331:CBLHMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., P. L. Spencer, K. L. Elmore, D. J. Stensrud, R. M. Hluchan, and P. C. Burke, 2009: Radar reflectivity–based estimates of mixed layer depth. J. Atmos. Oceanic Technol., 26, 229239, https://doi.org/10.1175/2008JTECHA1091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, https://doi.org/10.1175/JTECH-D-10-05048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., R. J. Doviak, D. S. Zrnić, and D. J. Stensrud, 2013: Structures of Bragg scatter observed with the polarimetric WSR-88D. J. Atmos. Oceanic Technol., 30, 12531258, https://doi.org/10.1175/JTECH-D-12-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2017: Operational modes and volume coverage patterns. Doppler radar meteorological observations; Part C: WSR-88D products and algorithms, Federal Meteorological Handbook 11, FCM-H11C-2017, Office of the Federal Coordinator for Meteorological Services and Supporting Research, 5-1–5-24, https://www.ofcm.gov/publications/fmh/FMH11/fmh11partC.pdf.

  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. The National Academies Press, 250 pp., https://doi.org/10.17226/12540.

    • Crossref
    • Export Citation
  • Rabin, R. M., and R. J. Doviak, 1989: Meteorological and astronomical influences on radar reflectivity in the convective boundary layer. J. Appl. Meteor., 28, 12261235, https://doi.org/10.1175/1520-0450(1989)028<1226:MAAIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., J. G. Cunningham, W. D. Zittel, R. R. Lee, R. L. Ice, V. M. Melnikov, N. P. Hoban, and J. G. Gebauer, 2017a: Bragg scatter detection by the WSR-88D. Part I: Algorithm development. J. Atmos. Oceanic Technol., 34, 465478, https://doi.org/10.1175/JTECH-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. M., W. D. Zittel, R. R. Lee, V. M. Melnikov, R. L. Ice, and J. G. Cunningham, 2017b: Bragg scatter detection by the WSR-88D. Part II: Assessment of ZDR bias estimation. J. Atmos. Oceanic Technol., 34, 479493, https://doi.org/10.1175/JTECH-D-16-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, https://doi.org/10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 526543, https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic Publishers, 670 pp., https://doi.org/10.1007/978-94-009-3027-8.

    • Crossref
    • Export Citation
  • Weiss, G., 1961: Wave Propagation in a Turbulent Medium (by V. I. Tatarski). Science, 134, 324–325, https://doi.org/10.1126/science.134.3475.324-b.

    • Crossref
    • Export Citation
  • White, A., 1993: Mixing depth detection using 915-MHz radar reflectivity data. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 248–250.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1052 260 12
PDF Downloads 894 189 14