The NCAR–NOAA Global Hawk Dropsonde System

Gary A. Wick Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Gary A. Wick in
Current site
Google Scholar
PubMed
Close
,
Terrence F. Hock Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Terrence F. Hock in
Current site
Google Scholar
PubMed
Close
,
Paul J. Neiman Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
Holger Vömel Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Holger Vömel in
Current site
Google Scholar
PubMed
Close
,
Michael L. Black Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Michael L. Black in
Current site
Google Scholar
PubMed
Close
, and
J. Ryan Spackman Earth Science Division, NASA Ames Research Center, Moffett Field, California

Search for other papers by J. Ryan Spackman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new remotely controlled Airborne Vertical Atmospheric Profiling System (AVAPS) dropsonde system has been developed for and deployed on the NASA Global Hawk (GH) unmanned aircraft. Design, fabrication, and operation of the system was led by the National Center for Atmospheric Research (NCAR) with support from the National Oceanic and Atmospheric Administration (NOAA) Unmanned Aircraft Systems (UAS) Program. The system has employed the NCAR Research Dropsonde 94 (NRD94) dropsonde, a smaller and lighter version of the standard RD94 dropsonde deployed from manned aircraft but with virtually identical sensors. The dropsondes provide in situ atmospheric profiles of temperature, pressure, and humidity at a 2-Hz data rate, and wind speed and direction at 4 Hz. The system is capable of carrying up to 90 dropsondes and can support eight simultaneous soundings. Operation from the GH means that the dropsondes can be deployed from altitudes up to 19.8 km during flights in excess of 24-h duration. The dropsonde launch is commanded directly by an operator on the ground in coordination with the aircraft commander. Over 2700 total dropsondes have been deployed from the GH during four major campaigns since 2011. Data are processed in near–real time and have been employed by forecasters, for assimilation in numerical weather prediction models, and in diverse research studies. Intercomparison studies suggest the performance of the GH NRD94 dropsondes is similar to those deployed from manned aircraft. This paper describes the components and operation of the system and illustrates its unique capabilities through highlights of data application to research on the Arctic atmosphere, atmospheric rivers, and tropical cyclones.

Deceased.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gary A. Wick, gary.a.wick@noaa.gov

Abstract

A new remotely controlled Airborne Vertical Atmospheric Profiling System (AVAPS) dropsonde system has been developed for and deployed on the NASA Global Hawk (GH) unmanned aircraft. Design, fabrication, and operation of the system was led by the National Center for Atmospheric Research (NCAR) with support from the National Oceanic and Atmospheric Administration (NOAA) Unmanned Aircraft Systems (UAS) Program. The system has employed the NCAR Research Dropsonde 94 (NRD94) dropsonde, a smaller and lighter version of the standard RD94 dropsonde deployed from manned aircraft but with virtually identical sensors. The dropsondes provide in situ atmospheric profiles of temperature, pressure, and humidity at a 2-Hz data rate, and wind speed and direction at 4 Hz. The system is capable of carrying up to 90 dropsondes and can support eight simultaneous soundings. Operation from the GH means that the dropsondes can be deployed from altitudes up to 19.8 km during flights in excess of 24-h duration. The dropsonde launch is commanded directly by an operator on the ground in coordination with the aircraft commander. Over 2700 total dropsondes have been deployed from the GH during four major campaigns since 2011. Data are processed in near–real time and have been employed by forecasters, for assimilation in numerical weather prediction models, and in diverse research studies. Intercomparison studies suggest the performance of the GH NRD94 dropsondes is similar to those deployed from manned aircraft. This paper describes the components and operation of the system and illustrates its unique capabilities through highlights of data application to research on the Arctic atmosphere, atmospheric rivers, and tropical cyclones.

Deceased.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gary A. Wick, gary.a.wick@noaa.gov
Save
  • Bolton, D., 1980: Computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, https://doi.org/10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and Coauthors, 2013: Driftsondes: Providing in situ long-duration dropsonde observations over remote regions. Bull. Amer. Meteor. Soc., 94, 16611674, https://doi.org/10.1175/BAMS-D-12-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, H. L., S. Rossby, and P. K. Govind, 1973: The NCAR wind-finding dropsonde. Atmos. Technol., 2, 1924.

  • Dettinger, M. D., 2004: Fifty-two years of “pineapple-express” storms across the west coast of North America. California Climate Change Center Rep. Series 2005-003, USGS, Scripps Institution of Oceanography for the California Energy Commission, PIER Project Rep., CEC-500-2005-004, http://www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF, 15 pp.

  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., G. A. Wick, P. G. Black, and J. Walker, 2018: Sensing hazards with operational unmanned technology: 2015–2016 campaign summary, final report. NOAA Tech. Memo. OAR UAS-001, 39 pp.

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/11 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, https://doi.org/10.1002/wrcr.20537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and H. L. Cole, 1991: A new aircraft universal lightweight digital dropwindsonde. Preprints, Seventh Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 291–296.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., and Coauthors, 2014: Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. Atmos. Meas. Tech., 7, 39173926, https://doi.org/10.5194/amt-7-3917-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2017: The NASA Airborne Tropical Tropopause Experiment: High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., 98, 129143, https://doi.org/10.1175/BAMS-D-14-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkee, D., G. A. Poe, D. Boucher, S. Swadley, Y. Hong, J. Wessel, and E. Uliana, 2008: Design and evaluation of the first Special Sensor Microwave Imager/Sounder (SSMIS). IEEE Trans. Geosci. Remote Sens., 46, 863883, https://doi.org/10.1109/TGRS.2008.917980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected with atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, B. J. Moore, F. M. Ralph, J. R. Spackman, and B. Ward, 2014: An airborne study of an atmospheric river over the subtropical pacific during WISPAR: Dropsonde budget-box diagnostics, and precipitation impacts in Hawaii. Mon. Wea. Rev., 142, 31993223, https://doi.org/10.1175/MWR-D-13-00383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ota, Y., J. C. Derber, E. Kalnay, and T. Miyoshi, 2013: Ensemble-based observation impact estimates using the NCEP GFS. Tellus, 65A, 20 038, https://doi.org/10.3402/tellusa.v65i0.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. M. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, https://doi.org/10.1175/2010MWR3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Dropsonde observations of water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Maslanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Tjernström, M., and Coauthors, 2005: Modeling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Bound.-Layer Meteor., 117, 337381, https://doi.org/10.1007/s10546-004-7954-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, 2016: Vaisala dropsonde RD94. Data Sheet, 2 pp., https://www.vaisala.com/sites/default/files/documents/RD94-Datasheet-B210936EN-B.pdf.

  • Vömel, H., K. Young, and T. Hock, 2016: NCAR GPS dropsonde humidity dry bias. NCAR Tech. Note NCAR/TN-531+STR, 7 pp., http://dx.doi.org/10.5065/D6XS5SGX.

    • Crossref
    • Export Citation
  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1995: The intercomparison of 53 SSM/I water vapor algorithms. Remote Sensing Systems Tech. Rep., 19 pp.

  • Wick, G. A., J. P. Dunion, and J. Walker, 2018: Sensing hazards with operational unmanned technology: Impact study of Global Hawk unmanned aircraft system observations for hurricane forecasting, final report. NOAA Tech. Memo. OAR UAS-002, 73 pp., http://dx.doi.org/10.7289/V5/TM-OAR-UAS-002.

    • Crossref
    • Export Citation
  • Young, K. and H. Vömel, 2016: EOL sounding file format. UCAR Earth Observing Laboratory, 3 pp., https://www.eol.ucar.edu/system/files/files/observing_facility/AVAPS%20Dropsonde%20System/v4.EOL%20Sounding%20Data%20File%20Format.docx.

  • Young, K., and H. Vömel, 2017: SHOUT-HRR dropsonde data quality report. NCAR Rep., 10 pp., http://data.eol.ucar.edu/datafile/nph-get/517.003/readme.SHOUT2016-HRR.GH-Dropsondes.pdf.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1386 305 47
PDF Downloads 1091 218 10