Abstract
A new remotely controlled Airborne Vertical Atmospheric Profiling System (AVAPS) dropsonde system has been developed for and deployed on the NASA Global Hawk (GH) unmanned aircraft. Design, fabrication, and operation of the system was led by the National Center for Atmospheric Research (NCAR) with support from the National Oceanic and Atmospheric Administration (NOAA) Unmanned Aircraft Systems (UAS) Program. The system has employed the NCAR Research Dropsonde 94 (NRD94) dropsonde, a smaller and lighter version of the standard RD94 dropsonde deployed from manned aircraft but with virtually identical sensors. The dropsondes provide in situ atmospheric profiles of temperature, pressure, and humidity at a 2-Hz data rate, and wind speed and direction at 4 Hz. The system is capable of carrying up to 90 dropsondes and can support eight simultaneous soundings. Operation from the GH means that the dropsondes can be deployed from altitudes up to 19.8 km during flights in excess of 24-h duration. The dropsonde launch is commanded directly by an operator on the ground in coordination with the aircraft commander. Over 2700 total dropsondes have been deployed from the GH during four major campaigns since 2011. Data are processed in near–real time and have been employed by forecasters, for assimilation in numerical weather prediction models, and in diverse research studies. Intercomparison studies suggest the performance of the GH NRD94 dropsondes is similar to those deployed from manned aircraft. This paper describes the components and operation of the system and illustrates its unique capabilities through highlights of data application to research on the Arctic atmosphere, atmospheric rivers, and tropical cyclones.
Deceased.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).