Single-Doppler Velocity Retrieval of the Wind Field in a Tornadic Supercell Using Mobile, Phased-Array, Doppler Radar Data

Yu-Chieng Liou Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Yu-Chieng Liou in
Current site
Google Scholar
PubMed
Close
,
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
,
Michael M. French School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Michael M. French in
Current site
Google Scholar
PubMed
Close
, and
Zachary B. Wienhoff School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Zachary B. Wienhoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A three-dimensional data assimilation (3DVar) least squares–type single-Doppler velocity retrieval (SDVR) algorithm is utilized to retrieve the wind field of a tornadic supercell using data collected by a mobile, phased-array, Doppler radar [Mobile Weather Radar (MWR) 05XP] with very high temporal resolution (6 s). It is found that the cyclonic circulation in the hook-echo region can be successfully recovered by the SDVR algorithm. The quality of the SDVR analyses is evaluated by dual-Doppler syntheses using data collected by two mobile Doppler radars [Doppler on Wheels 6 and 7 (DOW6 and DOW7, respectively)]. A comparison between the SDVR analyses and dual-Doppler syntheses confirms the conclusion reached by an earlier theoretical analysis that because of the temporally discrete nature of the radar data, the wind speed retrieved by single-Doppler radar is always underestimated, and this underestimate occurs more significantly for the azimuthal (crossbeam) wind component than for the radial (along beam) component. However, the underestimate can be mitigated by increasing the radar data temporal resolution. When the radar data are collected at a sufficiently high rate, the azimuthal wind component may be overestimated. Even with data from a rapid scan, phased-array, Doppler radar, our study indicates that it is still necessary to calculate the SDVR in an optimal moving frame of reference. Finally, the SDVR algorithm’s robustness is demonstrated. Even with a temporal resolution (2 min) much lower than that of the phased-array radar, the cyclonic flow structure in the hook-echo region can still be retrieved through SDVR using data observed by DOW6 or DOW7, although a difference in the retrieved fields does exist. A further analysis indicates that this difference is caused by the location of the radars.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yu-Chieng Liou, tyliou@atm.ncu.edu.tw

Abstract

A three-dimensional data assimilation (3DVar) least squares–type single-Doppler velocity retrieval (SDVR) algorithm is utilized to retrieve the wind field of a tornadic supercell using data collected by a mobile, phased-array, Doppler radar [Mobile Weather Radar (MWR) 05XP] with very high temporal resolution (6 s). It is found that the cyclonic circulation in the hook-echo region can be successfully recovered by the SDVR algorithm. The quality of the SDVR analyses is evaluated by dual-Doppler syntheses using data collected by two mobile Doppler radars [Doppler on Wheels 6 and 7 (DOW6 and DOW7, respectively)]. A comparison between the SDVR analyses and dual-Doppler syntheses confirms the conclusion reached by an earlier theoretical analysis that because of the temporally discrete nature of the radar data, the wind speed retrieved by single-Doppler radar is always underestimated, and this underestimate occurs more significantly for the azimuthal (crossbeam) wind component than for the radial (along beam) component. However, the underestimate can be mitigated by increasing the radar data temporal resolution. When the radar data are collected at a sufficiently high rate, the azimuthal wind component may be overestimated. Even with data from a rapid scan, phased-array, Doppler radar, our study indicates that it is still necessary to calculate the SDVR in an optimal moving frame of reference. Finally, the SDVR algorithm’s robustness is demonstrated. Even with a temporal resolution (2 min) much lower than that of the phased-array radar, the cyclonic flow structure in the hook-echo region can still be retrieved through SDVR using data observed by DOW6 or DOW7, although a difference in the retrieved fields does exist. A further analysis indicates that this difference is caused by the location of the radars.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yu-Chieng Liou, tyliou@atm.ncu.edu.tw
Save
  • Bluestein, H. B., M. M. French, I. PopStefanja, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms. Bull. Amer. Meteor. Soc., 91, 579600, https://doi.org/10.1175/2009BAMS2914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signature in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanja, C. A. Baldi, and R. T. Bluth, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, Supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1982: Errors in fixed and moving frame of reference: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39, 22792300, https://doi.org/10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, A. Shapiro, Q. Xu, and K. K. Doregemeier, 2001: Three-dimensional simple adjoint velocity retrievals from single-Doppler radar. J. Atmos. Oceanic Technol., 18, 2638, https://doi.org/10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, S.-Y. Lee, A. Shapiro, Q. Xu, and K. K. Droegemeier, 2006: A three-dimensional variational single-Doppler velocity retrieval method with simple conservation equation constraint. Meteor. Atmos. Phys., 94, 1126, https://doi.org/10.1007/s00703-005-0170-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 26642682, https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarus, S., A. Shapiro, and K. Droegemeier, 1999: Analysis of the Gal-Chen–Zhang single-Doppler velocity retrieval. J. Atmos. Oceanic Technol., 16, 518, https://doi.org/10.1175/1520-0426(1999)016<0005:AOTGCZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarus, S., A. Shapiro, and K. Droegemeier, 2001: Application of the Zhang–Gal-Chen single-Doppler velocity retrieval to a deep convective storm. J. Atmos. Sci., 58, 9981016, https://doi.org/10.1175/1520-0469(2001)058<0998:AOTZGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, https://doi.org/10.1175/JAS3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclones kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 24192439, https://doi.org/10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., 1999: Single radar recovery of cross-beam wind components using a modified moving frame of reference technique. J. Atmos. Oceanic Technol., 16, 10031016, https://doi.org/10.1175/1520-0426(1999)016<1003:SRROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., 2002: An explanation of the wind speed underestimation obtained from a least squares type single-Doppler radar velocity retrieval method. J. Appl. Meteor., 41, 811823, https://doi.org/10.1175/1520-0450(2002)041<0811:AEOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., 2007: Single-Doppler retrieval of the three-dimensional wind in a deep convective system based on an optimal moving frame of reference. J. Meteor. Soc. Japan, 85, 559582, https://doi.org/10.2151/jmsj.85.559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and I.-S. Luo, 2001: An investigation of the moving-frame single-Doppler wind retrieval technique using Taiwan Area Mesoscale Experiment low-level data. J. Appl. Meteor., 40, 19001917, https://doi.org/10.1175/1520-0450(2001)040<1900:AIOTMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 39924010, https://doi.org/10.1175/2009MWR2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., S.-F. Chang, and J. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140, 16031619, https://doi.org/10.1175/MWR-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., T.-C. Chen Wang, and P.-Y. Huang, 2016: The inland eyewall re-intensification of Typhoon Fanapi (2010) documented from an observational perspective using multiple-Doppler radar and surface measurements. Mon. Wea. Rev., 144, 241261, https://doi.org/10.1175/MWR-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, C., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588598, https://doi.org/10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, C., and Q. Xu, 1996: Least squares retrieval of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 124, 11321144, https://doi.org/10.1175/1520-0493(1996)124<1132:LSROMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, C., A. M. Shao, S. Liu, and Q. Xu, 2006: A two-step variational method for three-dimensional wind retrieval from single-Doppler radar. Meteor. Atmos. Phys., 91, 18, https://doi.org/10.1007/s00703-004-0093-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, X., Q. Xu, C. Qiu, K. Nai, and P. Zhang, 2013: Retrieving 3D wind field from phased array radar rapid scans. Adv. Meteor., 2013, 792631, https://doi.org/10.1155/2013/792631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 12651287, https://doi.org/10.1175/1520-0469(1995)052<1265:SDVRWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20, 17581775, https://doi.org/10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106, https://doi.org/10.1175/2009JTECHA1256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010a: Spatially variable advection correction of radar data. Part I: Theoretical considerations. J. Atmos. Sci., 67, 34453456, https://doi.org/10.1175/2010JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010b: Spatially variable advection correction of radar data. Part II: Test results. J. Atmos. Sci., 67, 34573470, https://doi.org/10.1175/2010JAS3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. K. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from simulated Doppler radar data. J. Atmos. Sci., 48, 876890, https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, 2007: Ground-based velocity track display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800, https://doi.org/10.1175/MWR3325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler Velocity Retrieval. Mon. Wea. Rev., 130, 433453, https://doi.org/10.1175/1520-0493(2002)130<0433:ROMIFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., C.-J. Qiu, and J.-X. Yu, 1994: Adjoint-method retrievals of low-altitude wind fields from single-Doppler wind data. J. Atmos. Oceanic Technol., 11, 579585, https://doi.org/10.1175/1520-0426(1994)011<0579:AMROLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., C.-J. Qiu, H.-D. Gu, and J.-X. Yu, 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 123, 18221833, https://doi.org/10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and Q. Xu, 1996: Statistical errors in variational data assimilation—A theoretical one-dimensional analysis applied to Doppler wind retrieval. J. Atmos. Sci., 53, 25632577, https://doi.org/10.1175/1520-0469(1996)053<2563:SEIVDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind retrieval in the moving frame of reference. J. Atmos. Sci., 53, 26092623, https://doi.org/10.1175/1520-0469(1996)053<2609:SDWRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 881 272 24
PDF Downloads 651 138 10