Modeling of Wake Vortex Radar Detection in Clear Air Using Large-Eddy Simulation

Dmitry A. Kovalev Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Dmitry A. Kovalev in
Current site
Google Scholar
PubMed
Close
,
Danielle Vanhoenacker-Janvier Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Danielle Vanhoenacker-Janvier in
Current site
Google Scholar
PubMed
Close
,
Philippe Billuart Thermodynamics and Fluid Mechanics, Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Philippe Billuart in
Current site
Google Scholar
PubMed
Close
,
Matthieu Duponcheel Thermodynamics and Fluid Mechanics, Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Matthieu Duponcheel in
Current site
Google Scholar
PubMed
Close
, and
Grégoire Winckelmans Thermodynamics and Fluid Mechanics, Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Grégoire Winckelmans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To detect wake vortices in all weather conditions, lidar and radar sensors are complementary. It is important to determine accurately the limitations of the radar detection in clear air and to determine the parameters influencing the detection. This paper is the first study to present the simulation and analysis of the radar signatures of wake vortices on the basis of state-of-the-art 3D large-eddy simulations. The setup of the large-eddy simulations is described and the evolution of the wake vortices is illustrated for the three simulated cases. A modified version of the model developed by Muschinski et al. is used here for the calculation of the radar-backscattered signal and the second moment of the Doppler spectrum that is used to estimate the wake vortex circulation. The simulator uses two different radar configurations for the retrieval of the circulation, which is compared with the circulation obtained directly from the large-eddy simulations. The retrieval of the circulation is fairly accurate if the level of backscattered signal is high enough above the detection threshold of the radar.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dmitry A. Kovalev, dmitry.kovalev@uclouvain.be

Abstract

To detect wake vortices in all weather conditions, lidar and radar sensors are complementary. It is important to determine accurately the limitations of the radar detection in clear air and to determine the parameters influencing the detection. This paper is the first study to present the simulation and analysis of the radar signatures of wake vortices on the basis of state-of-the-art 3D large-eddy simulations. The setup of the large-eddy simulations is described and the evolution of the wake vortices is illustrated for the three simulated cases. A modified version of the model developed by Muschinski et al. is used here for the calculation of the radar-backscattered signal and the second moment of the Doppler spectrum that is used to estimate the wake vortex circulation. The simulator uses two different radar configurations for the retrieval of the circulation, which is compared with the circulation obtained directly from the large-eddy simulations. The retrieval of the circulation is fairly accurate if the level of backscattered signal is high enough above the detection threshold of the radar.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dmitry A. Kovalev, dmitry.kovalev@uclouvain.be
Save
  • Alvelius, K., 1999: Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids, 11, 18801889, https://doi.org/10.1063/1.870050.

  • Barbaresco, F., A. Jeantet, and U. Meier, 2007: Wake vortex detection and monitoring by X-band Doppler radar: Paris Orly radar campaign results. Int. Conf. on Radar Systems, Edinburgh, United Kingdom, Institution of Engineering and Technology, https://doi.org/10.1049/cp:20070559.

    • Crossref
    • Export Citation
  • Barbaresco, F., J. P. Wasselin, A. Jeantet, and U. Meier, 2008: Wake vortex profiling by Doppler X-band radar: Orly trials at initial take-off and ILS interception critical areas. Radar Conf., Rome, Italy, Institute of Electrical and Electronics Engineers, https://doi.org/10.1109/RADAR.2008.4721113.

    • Crossref
    • Export Citation
  • Bean, B. R., and E. J. Dutton, 1966: Radio Meteorology. National Bureau of Standards Monogr., No. 92, U.S. Government Printing Office, 435 pp.

  • Blackman, R. B., and J. W. Tukey, 1958: The measurement of power spectra from the point of view of communications engineering—Part I. Bell Syst. Tech. J., 37, 185282, https://doi.org/10.1002/j.1538-7305.1958.tb03874.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, 2006: Spectral Methods: Fundamentals in Single Domains. Scientific Computation Series, Vol. 22, Springer-Verlag, 581 pp., https://doi.org/10.1007/978-3-540-30726-6.

    • Crossref
    • Export Citation
  • Chadwick, R. B., J. Joradan, and T. Detman, 1984: Radar cross section measurements of wingtip vortices. Proc. Int. Geoscience and Remote Sensing Symp., Strasbourg, France, European Space Agency, 479–483.

  • Cheng, J., J. Tittsworth, W. Gallo, and A. Awwad, 2016: The development of wake turbulence recategorization in the United States. Eighth Atmospheric and Space Environments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2016-3434.

    • Crossref
    • Export Citation
  • Crow, S. C., 1970: Stability theory for a pair of trailing vortices. AIAA J., 8, 21722179, https://doi.org/10.2514/3.6083.

  • De Visscher, I., 2012: Interaction of wake vortices with the atmosphere and the ground: Advanced numerical simulation and operational modeling. Doctoral thesis, Ecole Polytechnique de Louvain, 339 pp., http://hdl.handle.net/2078.1/110734.

  • De Visscher, I., L. Bricteux, and G. Winckelmans, 2013: Aircraft vortices in stably stratified and weakly turbulent atmospheres: Simulation and modeling. AIAA J., 51, 551556, https://doi.org/10.2514/1.J051742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Direction Générale de l’Aviation Civile, 2016: Implementation of the RECAT-EU wake turbulence separation scheme at Paris-Charles de Gaulle, Paris-Le Bourget and Pontoise–Cormeilles-en-Vexin airports from March 22nd 2016. Direction des Services de la Navigation Aérienne Tech. Rep. AIC FRANCE A 03/16, 6 pp.

  • Doviak, R. J., and D. S. Zrnić, 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp., https://doi.org/10.1016/B978-0-12-221420-2.50005-3.

    • Crossref
    • Export Citation
  • Frehlich, R., 1992: Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer. J. Atmos. Sci., 49, 14941509, https://doi.org/10.1175/1520-0469(1992)049<1494:LSMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilson, W., 1992: Radar measurements of aircraft wakes. Massachusetts Institute of Technology Lincoln Laboratory Tech. Rep. AAW-11, 21 pp.

  • Hill, R. J., 1978a: Models of the scalar spectrum for turbulent advection. J. Fluid Mech., 88, 541562, https://doi.org/10.1017/S002211207800227X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1978b: Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges. Radio Sci., 13, 953961, https://doi.org/10.1029/RS013i006p00953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., and S. F. Clifford, 1978: Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation. J. Opt. Soc. Amer., 68, 892899, https://doi.org/10.1364/JOSA.68.000892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeanmart, H., 2002: Investigation of novel approaches and models for large-eddy simulation of turbulent flows. Doctoral thesis, Ecole Polytechnique de Louvain.

  • Jeanmart, H., and G. Winckelmans, 2007: Investigation of eddy-viscosity models modified using discrete filters: A simplified “regularized variational multiscale model” and an “enhanced field model.” Phys. Fluids, 19, 055110, https://doi.org/10.1063/1.2728935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovalev, D., and D. Vanhoenacker-Janvier, 2017: Validation of electromagnetic wind radar simulator based on LES with scanning X-band radar measurements and meteorological data. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 45, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320370.

  • Kovalev, D., D. Vanhoenacker-Janvier, R. Wilson, and F. Barbaresco, 2016: Electromagnetic wind radar simulator validation using meteorological data and a zenith X-band radar. European Radar Conf., London, United Kingdom, Institute of Electrical and Electronics Engineers, 121–124.

  • Krause, S., 2003: Aircraft Safety: Accident Investigations, Analyses, and Applications. 2nd ed. McGraw-Hill Education, 483 pp.

  • Li, J., X. Wang, T. Wang, and C. Shen, 2009: Delaminating quadrature method for multi-dimensional highly oscillatory integrals. Appl. Math. Comput., 209, 327338, https://doi.org/10.1016/j.amc.2008.12.061.

    • Search Google Scholar
    • Export Citation
  • Li, J., X. Wang, and T. Wang, 2010: Scattering mechanism of aircraft wake vortices generated in clear air. Radar Conf., Washington, DC, Institute of Electrical and Electronics Engineers, 117–122, https://doi.org/10.1109/RADAR.2010.5494642.

    • Crossref
    • Export Citation
  • Li, J., X. Wang, T. Wang, S. Xiao, and M. Zhu, 2011: On an improved-Levin oscillatory quadrature method. J. Math. Anal. Appl., 380, 467474, https://doi.org/10.1016/j.jmaa.2011.03.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, R. E., and T. J. Myers, 1996: Wingtip generated wake vortices as radar target. IEEE Aerosp. Electron. Syst. Mag., 11, 2730, https://doi.org/10.1109/62.544796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, R. E., A. Mudukutore, V. L. H. Wissel, and T. Myers, 1997: Three-centimeter Doppler radar observations of wingtip-generated wake vortices in clear air. NASA Tech. Rep. CR-97-206260, 90 pp.

  • Muschinski, A., and S. M. de Bruyn Kops, 2015: Investigation of Hill’s optical turbulence model by means of direct numerical simulation. J. Opt. Soc. Amer., 32A, 24232430, https://doi.org/10.1364/JOSAA.32.002423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, 1999: First synthesis of wind-profiler signals on the basis of large-eddy simulation data. Radio Sci., 34, 14371459, https://doi.org/10.1029/1999RS900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. J., W. A. Scales, and R. E. Marshall, 1999: Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapor. Radio Sci., 34, 103111, https://doi.org/10.1029/98RS02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nespor, J., B. Hudson, R. Stegall, and J. Freedman, 1992: Doppler radar detection of vortex hazard indicators. Proc. Aircraft Wake Vortices Conf., Washington, DC, Federal Aviation Administration, 37.

  • Noonkester, V. R., and J. H. Richter, 1980: FM-CW radar sensing of the lower atmosphere. Radio Sci., 15, 337353, https://doi.org/10.1029/RS015i002p00337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oude Nijhuis, A. C. P., and Coauthors, 2018: Wind hazard and turbulence monitoring at airports with lidar, radar, and mode-s downlinks: The UFO project. Bull. Amer. Meteor. Soc., 99, 22752293, https://doi.org/10.1175/BAMS-D-15-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rooseleer, F., and V. Treve, 2013: RECAT-EU—European proposal for revised wake turbulence categorisation and separation minima on approach and departure. EUROCONTROL Tech. Rep., 32 pp.

  • Rubin, W. L., 2000: Radar-acoustic detection of aircraft wake vortices. J. Atmos. Oceanic Technol., 17, 10581065, https://doi.org/10.1175/1520-0426(2000)017<1058:RADOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagaut, P., 2006: Large Eddy Simulations for Incompressible Flows. Springer-Verlag, 558 pp., https://doi.org/10.1007/b137536.

    • Crossref
    • Export Citation
  • Shariff, K., and A. Wray, 2002: Analysis of the radar reflectivity of aircraft vortex wakes. J. Fluid Mech., 463, 121161, https://doi.org/10.1017/S0022112002008674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shephard, D. J., A. P. Kyte, and C. A. Segura, 1994: Radar wake vortex measurements at F and I band. Colloquium on Radar and Microwave Imaging, London, United Kingdom, Institution of Engineering and Technology, 7/1–7/5.

  • Tatarskii, V. I., 1971: The Effects of the Turbulent Atmosphere on Wave Propagation. Keter Press, 488 pp.

  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Vanhoenacker-Janvier, D., K. Djafri, and F. Barbaresco, 2012: Model for the calculation of the radar cross section of wake vortices of take-off and landing airplanes. Ninth European Radar Conf., Amsterdam, Netherlands, IEEE, 349–352.

  • Vanhoenacker-Janvier, D., C. Pereira, M. Duponcheel, and A. Oude Nijhuis, 2014: Radar simulator for wind monitoring, UFO deliverable: D2110-2. Université catholique de Louvain–Delft University of Technology.

  • Williamson, J. H., 1980: Low-storage Runge–Kutta schemes. J. Comput. Phys., 35, 4856, https://doi.org/10.1016/0021-9991(80)90033-9.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1102 632 220
PDF Downloads 401 55 5