Assessment of Tide Gauge Biases and Precision by the Combination of Multiple Collocated Time Series

Kevin Gobron Littoral Environnement et Sociétés, University of La Rochelle, CNRS, UMR7266, La Rochelle, France

Search for other papers by Kevin Gobron in
Current site
Google Scholar
PubMed
Close
,
Olivier de Viron Littoral Environnement et Sociétés, University of La Rochelle, CNRS, UMR7266, La Rochelle, France

Search for other papers by Olivier de Viron in
Current site
Google Scholar
PubMed
Close
,
Guy Wöppelmann Littoral Environnement et Sociétés, University of La Rochelle, CNRS, UMR7266, La Rochelle, France

Search for other papers by Guy Wöppelmann in
Current site
Google Scholar
PubMed
Close
,
Étienne Poirier Littoral Environnement et Sociétés, University of La Rochelle, CNRS, UMR7266, La Rochelle, France

Search for other papers by Étienne Poirier in
Current site
Google Scholar
PubMed
Close
,
Valérie Ballu Littoral Environnement et Sociétés, University of La Rochelle, CNRS, UMR7266, La Rochelle, France

Search for other papers by Valérie Ballu in
Current site
Google Scholar
PubMed
Close
, and
Michel Van Camp Royal Observatory of Belgium, Uccle, Belgium

Search for other papers by Michel Van Camp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study proposes a method for the cross calibration of tide gauges. Based on the combination of at least three collocated sea level time series, it takes advantage of the least squares variance component estimation (LS-VCE) method to assess both sea level biases and uncertainties in real conditions. The method was applied to a multi-instrument experiment carried out on Aix Island, France, in 2016. Six tide gauges were deployed to carry out simultaneous sea level recordings for 11 h. The best results were obtained with an electrical contact probe, which reaches a 3-mm uncertainty. The method allows us to assess both the biases and the precision—that is, the full accuracy—for each instrument. The results obtained with the proposed combination method have been compared to that of a buddy-checking method. It showed that the combination of all the time series also provides more precise bias estimates.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin Gobron, kevin.gobron1@univ-lr.fr

Abstract

This study proposes a method for the cross calibration of tide gauges. Based on the combination of at least three collocated sea level time series, it takes advantage of the least squares variance component estimation (LS-VCE) method to assess both sea level biases and uncertainties in real conditions. The method was applied to a multi-instrument experiment carried out on Aix Island, France, in 2016. Six tide gauges were deployed to carry out simultaneous sea level recordings for 11 h. The best results were obtained with an electrical contact probe, which reaches a 3-mm uncertainty. The method allows us to assess both the biases and the precision—that is, the full accuracy—for each instrument. The results obtained with the proposed combination method have been compared to that of a buddy-checking method. It showed that the combination of all the time series also provides more precise bias estimates.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin Gobron, kevin.gobron1@univ-lr.fr
Save
  • Abbondanza, C., Z. Altamimi, T. Chin, R. Gross, M. Heflin, J. Parker, and X. Wu, 2015: Three-corner hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J. Geod., 89, 313329, https://doi.org/10.1007/s00190-014-0777-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiri-Simkooei, A., 2007: Least-squares variance component estimation: Theory and GPS applications. Ph.D. thesis, Delft University of Technology, 208 pp., http://resolver.tudelft.nl/uuid:bc7f8919-1baf-4f02-b115-dc926c5ec090.

  • Amiri-Simkooei, A., P. Teunissen, and C. Tiberius, 2009: Application of least-squares variance component estimation to GPS observables. J. Surv. Eng., 135, 149160, https://doi.org/10.1061/(ASCE)0733-9453(2009)135:4(149).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • André, G., B. Martín Míguez, V. Ballu, L. Testut, and G. Wöppelmann, 2013: Measuring sea level with GPS-equipped buoys: A multi-instruments experiment at Aix Island. Int. Hydrogr. Rev., 10, 2738.

    • Search Google Scholar
    • Export Citation
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, 2008: International Vocabulary of Metrology—Basic and General Concepts and Associated Terms. JCGM 200:2008, 90 pp., https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf.

  • Cartwright, D. E., 2000: Tides: A Scientific History. Cambridge University Press, 306 pp.

  • Caspary, W., 1987: Concepts of Network and Deformation Analysis. School of Surveying Monogr., Vol. 11, University of New South Wales, 183 pp.

  • de Viron, O., I. Panet, V. Mikhailov, M. Van Camp, and M. Diament, 2008: Retrieving earthquake signature in grace gravity solutions. Geophys. J. Int., 174, 1420, https://doi.org/10.1111/j.1365-246X.2008.03807.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feissel-Vernier, M., O. de Viron, and K. Le Bail, 2007: Stability of VLBI, SLR, DORIS, and GPS positioning. Earth Planets Space, 59, 475497, https://doi.org/10.1186/BF03352712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fotopoulos, G., 2003: An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. Ph.D. thesis, University of Calgary, 238 pp., https://doi.org/10.11575/PRISM/10883.

    • Crossref
    • Export Citation
  • Gouriou, T., B. Martín Míguez, and G. Wöppelmann, 2013: Reconstruction of a two-century long sea level record for the Pertuis d’Antioche (France). Cont. Shelf Res., 61–62, 3140, https://doi.org/10.1016/j.csr.2013.04.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, J. E., and D. W. Allan, 1974: A method for estimating the frequency stability of an individual oscillator. 28th Annual Symp. on Frequency Control, Atlantic City, NJ, IEEE, 243–246, https://doi.org/10.1109/FREQ.1974.200027.

    • Crossref
    • Export Citation
  • IOC, 1985: Manual on sea level measurement and interpretation: Volume I - Basic procedures. IOC Manuals and Guides 14, UNESCO, 75 pp.

  • IOC, 2002: Manual on sea level measurement and interpretation. Volume III - Reappraisals and recommendations as of the year 2000. IOC Manuals and Guides 14, UNESCO, 55 pp.

  • IOC, 2006: Manual on sea level measurement and interpretation. Volume IV - An update to 2006. IOC Manuals and Guides 14, UNESCO, 80 pp.

  • IOC, 2012: The Global Sea-Level Observing System (GLOSS): Implementation plan 2012. IOC Tech. Series 100, GOOS Rep. 194, JCOMM Tech. Rep. 66, UNESCO, 44 pp.

  • IOC, 2016: Manual on sea level measurement and interpretation. Volume V - Radar gauges. IOC Manuals and Guides 14, UNESCO, 220 pp.

  • Larson, K. M., R. D. Ray, and S. D. Williams, 2017: A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos. Oceanic Technol., 34, 295307, https://doi.org/10.1175/JTECH-D-16-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennon, G., 1968: The evaluation of tide-gauge performance through the Van de Casteele test. Cah. Oceanogr., 20, 867877.

  • Lentz, S. J., 1993: The accuracy of tide-gauge measurements at subtidal frequencies. J. Atmos. Oceanic Technol., 10, 238245, https://doi.org/10.1175/1520-0426(1993)010<0238:TAOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacAulay, P., C. O’Reilly, and K. Thompson, 2008: Atlantic Canada’s real-time water level system observations, predictions, forecasts and datums on the web. Proc. Canadian Hydrographic Conf. and National Surveyors Conf. 2008, Victoria, BC, Canada, Canadian Hydrographic Association, 18 pp., https://hydrography.ca/wp-content/uploads/files/2008conference/session_4/4-4_MacAulay_et_al.pdf.

    • Search Google Scholar
    • Export Citation
  • Martín Míguez, B., R. Le Roy, and G. Wöppelmann, 2008a: The use of radar tide gauges to measure variations in sea level along the French coast. J. Coastal Res., 24, 6168, https://doi.org/10.2112/06-0787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín Míguez, B., L. Testut, and G. Wöppelmann, 2008b: The Van de Casteele test revisited: An efficient approach to tide gauge error characterization. J. Atmos. Oceanic Technol., 25, 12381244, https://doi.org/10.1175/2007JTECHO554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín Míguez, B., L. Testut, and G. Wöppelmann, 2012: Performance of modern tide gauges: Towards mm-level accuracy. Sci. Mar., 76, 221228, https://doi.org/10.3989/scimar.03618.18A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pálinkáš, V., and Coauthors, 2017: Regional comparison of absolute gravimeters, EURAMET. M.G-K2 key comparison. Metrologia, 54, 07012, https://doi.org/10.1088/0026-1394/54/1A/07012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., R. Heitsenrether, and W. Sweet, 2014: Water level and wave height estimates at NOAA tide stations from acoustic and microwave sensors. J. Atmos. Oceanic Technol., 31, 22942308, https://doi.org/10.1175/JTECH-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, B., A. Payo, D. López, P. Woodworth, and E. A. Fanjul, 2014: Overlapping sea level time series measured using different technologies: An example from the REDMAR Spanish network. Nat. Hazards Earth Syst. Sci., 14, 589, https://doi.org/10.5194/nhess-14-589-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pugh, D., and P. Woodworth, 2014: Sea-level measuring systems. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, Cambridge University Press, 17–35, https://doi.org/10.1017/CBO9781139235778.005.

    • Crossref
    • Export Citation
  • Pytharouli, S., S. Chaikalis, and S. C. Stiros, 2018: Uncertainty and bias in electronic tide-gauge records: Evidence from collocated sensors. Measurement, 125, 496508, https://doi.org/10.1016/j.measurement.2018.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takasu, T., 2013: Rtklib ver. 2.4. 2 manual. RTKLIB: An Open Source Program Package for GNSS Positioning, 183 pp., http://www.rtklib.com/prog/manual_2.4.2.pdf.

  • Teunissen, P. J. G., 1988: Towards a least-squares framework for adjusting and testing of both functional and stochastic models. Mathematical Geodesy and Positioning Series 26, Technische Universiteit Delft, 54 pp.

  • Teunissen, P. J. G., 2000: Adjustment Theory: An Introduction. Mathematical Geodesy and Positioning Series, Delft University Press, 193 pp.

    • Search Google Scholar
    • Export Citation
  • Teunissen, P. J. G., and A. R. Amiri-Simkooei, 2008: Least-squares variance component estimation. J. Geod., 82, 6582, https://doi.org/10.1007/s00190-007-0157-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valty, P., O. de Viron, I. Panet, M. Van Camp, and J. Legrand, 2013: Assessing the precision in loading estimates by geodetic techniques in southern Europe. Geophys. J. Int., 194, 14411454, https://doi.org/10.1093/gji/ggt173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, C., R. Coleman, and R. Handsworth, 2008: Coastal tide gauge calibration: A case study at Macquarie Island using GPS buoy techniques. J. Coastal Res., 244, 10711079, https://doi.org/10.2112/07-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1613 367 58
PDF Downloads 1264 215 33