Improving Surface Current Resolution Using Direction Finding Algorithms for Multiantenna High-Frequency Radars

Anthony Kirincich Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Anthony Kirincich in
Current site
Google Scholar
PubMed
Close
,
Brian Emery University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Brian Emery in
Current site
Google Scholar
PubMed
Close
,
Libe Washburn University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Libe Washburn in
Current site
Google Scholar
PubMed
Close
, and
Pierre Flament University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pierre Flament in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony Kirincich, akirincich@whoi.edu

Abstract

While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anthony Kirincich, akirincich@whoi.edu
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D., 1972: First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propag., 20, 210, https://doi.org/10.1109/TAP.1972.1140123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D., and B. J. Lipa, 1999: Radar angle determination with MUSIC direction finding. U.S. Patent 5 990 834, 12 pp.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, and K.-W. Gurgel, 2010a: Interactions between a submesoscale anticyclonic vortex and a front. J. Phys. Oceanogr., 40, 18021818, https://doi.org/10.1175/2010JPO4055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, D. S. Luther, and K.-W. Gurgel, 2010b: Observations of vortex Rossby waves associated with a mesoscale cyclone. J. Phys. Oceanogr., 40, 23332340, https://doi.org/10.1175/2010JPO4495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y. H., 1999: Alternating projection for maximum-likelihood source localization using eigendecomposition. IEEE Signal Process. Lett., 6, 7375, https://doi.org/10.1109/97.752057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The method and descriptive view. J. Geophys. Res., 90, 47414755, https://doi.org/10.1029/JC090iC03p04741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Paolo, T., and E. Terrill, 2007: Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm. J. Atmos. Oceanic Technol., 24, 12771300, https://doi.org/10.1175/JTECH2040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Paolo, T., T. Cook, and E. Terrill, 2007: Properties of HF radar compact antenna arrays and their effect on the MUSIC algorithm. Oceans 2007, Vancouver, BC, Canada, IEEE, https://doi.org/10.1109/OCEANS.2007.4449265.

    • Search Google Scholar
    • Export Citation
  • Emery, B. M., 2018: Evaluation of alternative direction of arrival methods for oceanographic HF radars. IEEE J. Oceanic Eng., https://doi.org/10.1109/JOE.2019.2914537, in press.

    • Search Google Scholar
    • Export Citation
  • Emery, B. M., and L. Washburn, 2017: Improved direction of arrival methods for oceanographic HF radars. Conf. on Antenna Measurements and Applications, Syracuse, NY, IEEE, https://doi.org/10.1109/CAMA.2016.7815813.

    • Search Google Scholar
    • Export Citation
  • Emery, B. M., and L. Washburn, 2019: Uncertainty estimates for SeaSonde HF radar ocean current observations. J. Atmos. Oceanic Technol., 36, 231247, https://doi.org/10.1175/JTECH-D-18-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, B. M., L. Washburn, and J. A. Harlan, 2004: Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J. Atmos. Oceanic Technol., 21, 12591271, https://doi.org/10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, P., 2015: Noise properties of HF radar measurement of ocean surface currents. Radio Sci., 50, 764777, https://doi.org/10.1002/2015RS005681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, B., 2009: Wireless direction-finding fundamentals. Classical and Modern Direction-of-Arrival Estimation, Elsevier, 1–51, https://doi.org/10.1016/B978-0-12-374524-8.00001-5.

    • Crossref
    • Export Citation
  • Gurgel, K.-W., G. Antonischki, H.-H. Essen, and T. Schlick, 1999: Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coastal Eng., 37, 219234, https://doi.org/10.1016/S0378-3839(99)00027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlan, J., E. Terrill, L. Hazard, C. Keen, D. Barrick, C. Whelan, S. Howden, and J. Kohut, 2010: The Integrated Ocean Observing System high-frequency radar network: Status and local, regional, and national applications. Mar. Technol. Soc. J., 44, 122132, https://doi.org/10.4031/MTSJ.44.6.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horn, R., and C. Johnson, 1985: Matrix Analysis. Cambridge University Press, 561 pp.

  • Jeans, P., and R. Donnelly, 1986: Four-element CODAR beam forming. IEEE J. Oceanic Eng., 11, 296303, https://doi.org/10.1109/JOE.1986.1145174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. H., and D. E. Dudgeon, 1993: Array Signal Processing: Concepts and Techniques. PTR Prentice Hall, 533 pp.

  • Kaplan, D. M., and J. Largier, 2006: HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II, 53, 29062930, https://doi.org/10.1016/j.dsr2.2006.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., 2017a: HFR_DP developer package. Woods Hole Oceanographic Institution, Woods Hole, https://github.com/akirincich/HFR{\_}DP.git.

  • Kirincich, A., 2017b: Improved detection of the first-order region for direction-finding HF radars using image processing techniques. J. Atmos. Oceanic Technol., 34, 16791691, https://doi.org/10.1175/JTECH-D-16-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., 2019: LERA HF radar developer package. Woods Hole Oceanographic Institution, https://doi.org/10.5281/zenodo.3353662.

    • Crossref
    • Export Citation
  • Kirincich, A., and S. J. Lentz, 2017: The importance of lateral variability on exchange across the inner shelf south of Martha’s Vineyard, MA. J. Geophys. Res. Oceans, 122, 23602381, https://doi.org/10.1002/2016JC012491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., T. de Paolo, and E. Terrill, 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, https://doi.org/10.1175/JTECH-D-11-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., H. J. Roarty, and S. M. Glenn, 2006: Characterizing observed environmental variability with HF Doppler radar surface current mappers and acoustic Doppler current profilers: Environmental variability in the coastal ocean. IEEE J. Oceanic Eng., 31, 876884, https://doi.org/10.1109/JOE.2006.886095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krim, H., and M. Viberg, 1996: Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag., 13, 6794, https://doi.org/10.1109/79.526899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laws, K. E., D. M. Fernandez, and J. D. Paduan, 2000: Simulation-based evaluations of HF radar ocean current algorithms. IEEE J. Oceanic Eng., 25, 481491, https://doi.org/10.1109/48.895355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laws, K. E., J. D. Paduan, and J. Vesecky, 2010: Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Oceanic Technol., 27, 10291043, https://doi.org/10.1175/2009JTECHO658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. U., J. Choi, I. Song, S. Member, and S. R. Lee, 1997: Distributed source modeling and direction-of-arrival estimation techniques. IEEE Trans. Signal Process., 45, 960969, https://doi.org/10.1109/78.564184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B., B. Nyden, D. S. Ullman, and E. Terrill, 2006: SeaSonde radial velocities: Derivation and internal consistency. IEEE J. Oceanic Eng., 31, 850861, https://doi.org/10.1109/JOE.2006.886104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Pedraja, J., L. K. Shay, B. K. Haus, and C. Whelan, 2013: Interoperability of seasondes and Wellen Radars in mapping radial surface currents. J. Atmos. Oceanic Technol., 30, 26622675, https://doi.org/10.1175/JTECH-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, S. K., and C. K. Un, 1991: Fast initialization procedure of the alternating projection algorithm for maximum-likelihood localization of multiple sources. Signal Process., 25, 381389, https://doi.org/10.1016/0165-1684(91)90122-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohlmann, C., P. White, L. Washburn, E. Terrill, B. Emery, and M. Otero, 2007: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666680, https://doi.org/10.1175/JTECH1998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, W., 1999: A maximum likelihood HF direction finding estimator for high latitude distributed signals. Defence Research Establishment Tech. Rep., 83 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a371117.pdf.

  • Romero, L., D. A. Siegel, J. C. McWilliams, Y. Uchiyama, and C. Jones, 2016: Characterizing storm water dispersion and dilution from small coastal streams. J. Geophys. Res. Oceans, 121, 39263943, https://doi.org/10.1002/2015JC011323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. R. Kirincich, R. Limeburner, and I. A. Udovydchenkov, 2014: Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Oceanic Technol., 31, 945966, https://doi.org/10.1175/JTECH-D-13-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R. O., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propag., 34, 276280, https://doi.org/10.1109/TAP.1986.1143830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., and S. J. Lentz, 2004: Observations of tidal variability on the New England shelf. J. Geophys. Res., 109, C06010, https://doi.org/10.1029/2003JC001972.

    • Search Google Scholar
    • Export Citation
  • Stoica, P., and A. Nehorai, 1989: Music, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 37, 720741, https://doi.org/10.1109/29.17564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoica, P., and K. C. Sharman, 1990: Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process., 38, 11321143, https://doi.org/10.1109/29.57542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuncer, E., and B. Friedlander, 2009: Classical and Modern Direction-of-Arrival Estimation. Academic Press, 451 pp.

  • Ullman, D. S., J. O’Donnell, J. Kohut, T. Fake, and A. Allen, 2006: Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties. J. Geophys. Res., 111, C12005, https://doi.org/10.1029/2006JC003715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viberg, M., B. Ottersten, and T. Kailath, 1991: Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process., 39, 24362449, https://doi.org/10.1109/78.97999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and E. W. Gill, 2016: Evaluation of beamforming and direction finding for a phased array HF ocean current radar. J. Atmos. Oceanic Technol., 33, 25992613, https://doi.org/10.1175/JTECH-D-15-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, L., E. Romero, C. Johnson, C. Gotschalk, and B. M. Emery, 2016: Antenna calibration for oceanographic radars using aerial drones. Conf. on Antenna Measurements and Applications, Syracuse, NY, IEEE, https://doi.org/10.1109/CAMA.2016.7815751.

    • Crossref
    • Export Citation
  • Wax, M., and T. Kailath, 1985: Detection of signals by information theoretic criteria. IEEE Trans. Speech Signal Process., 33, 387392, https://doi.org/10.1109/TASSP.1985.1164557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J., 2006: The summertime heat budget and circulation of southeast New England shelf waters. J. Phys. Oceanogr., 36, 19972011, https://doi.org/10.1175/JPO2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, B. L. R., 2005: HF radar for real-time current, wave and wind monitoring. Hydro Int., 19, 23.

  • Ziskind, I., and M. Wax, 1988: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process., 36, 15531560, https://doi.org/10.1109/29.7543.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 797 272 16
PDF Downloads 516 134 8