• Bernhard, G., C. R. Booth, and J. C. Ehramjian, 2005: Real-time ultraviolet and column ozone from multichannel ultraviolet radiometers deployed in the National Science Foundation’s ultraviolet monitoring network. Opt. Eng., 44, 041011, https://doi.org/10.1117/1.1887195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhard, G., C. R. Booth, J. C. Ehramjian, and V. V. Quang, 2008: NSF Polar Programs UV spectroradiometer network 2006-2007. Biospherical Instruments Inc. Operations Rep., Vol. 16.0, 265 pp.

  • Dahlback, A., 1996: Measurements of biologically effective UV doses, total ozone abundances and cloud effects with multichannel, moderate bandwidth filter instruments. Appl. Opt., 35, 65146521, https://doi.org/10.1364/AO.35.006514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz, S., and Coauthors, 2011: Data quality objectives (DQO) for solar ultraviolet radiation measurements (Part I): Scanning spectral and broadband instruments. WMO Global Atmosphere Watch Programme Rep. 198, 21 pp.

  • Fan, L., W. Li, A. Dahlback, J. J. Stamnes, S. Englehardt, S. Stamnes, and K. Stamnes, 2014: Comparisons of three NILU-UV instruments deployed at the same site in the new York areas. Appl. Opt., 53, 35983606, https://doi.org/10.1364/AO.53.003598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gröbner, J., 2003: Improved entrance optic for global irradiance measurements with a Brewer spectrophotometer. Appl. Opt., 42, 35163521, https://doi.org/10.1364/AO.42.003516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gröbner, J., M. Blumthaler, and W. Ambach, 1996: Experimental investigation of spectral global irradiance measurement errors due to a non ideal cosine response. Geophys. Res. Lett., 23, 24932496, https://doi.org/10.1029/96GL02380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gröbner, J., G. Hülsen, L. Vuilleumier, M. Blumthaler, J. M. Vilaplana, D. Walker, and J. E. Gil, 2006: Report of the PMOD/WRC-COST calibration and intercomparison of erythemal radiometers. European Cooperation in Science and Technology Rep., 108 pp.

  • Høiskar, B. A. K., and Coauthors, 2003: Multichannel moderate-bandwidth instrument for measurement of the ozone-column amount, cloud transmittance and ultraviolet dose rates. Appl. Opt., 42, 34723479, https://doi.org/10.1364/AO.42.003472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossaini, R., M. P. Chipperfield, S. A. Montzka, A. Rap, S. Dhomse, and W. Feng, 2015: Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. Nat. Geosci., 8, 186190, https://doi.org/10.1038/ngeo2363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 408 pp.

  • Johnsen, B., and Coauthors, 2008a: Intercomparison of global UV index from multiband filter radiometers: Harmonization of global UVI and spectral irradiance. WMO Tech. Rep. WMO/TD-1454, 61 pp.

  • Johnsen, B., and Coauthors, 2008b: Intercomparison and harmonization of UV index measurement from multiband filter radiometers. J. Geophys. Res., 113, D15206, https://doi.org/10.1029/2007JD009731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazantzidis, A., A. Bais, C. Topaloglou, K. Garane, M. Zempila, C. Meleti, and C. Zerefos, 2006: Quality assurance of the Greek UV network: Preliminary results from the pilot phase operation. Proc. SPIE, 6362, 636229, https://doi.org/10.1117/12.689798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakkala, K., and Coauthors, 2005: Quality assurance of the solar UV network in the Antarctic. J. Geophys. Res., 110, D15101, https://doi.org/10.1029/2004JD005584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, R. M., M. Norval, R. E. Neale, A. R. Young, F. R. de Gruijl, Y. Takizawa, and J. C. van der Leun, 2015: The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci., 14, 5387, https://doi.org/10.1039/C4PP90033B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinander, O., T. Koskela, K. Lakkala, A. Redondas, C. Torres, E. Cuevas, G. Deferrari, and J. Gröbner, 2004: Antarctic NILU-UV network linked to QASUME and NSF irradiance scales. Quadrennial Ozone Symp., Kos, Greece, International Ozone Commission, 1128–1129.

  • NILU Products, 1999: The NILU-UV relative lamp unit: User’s manual. NILU Products Rep., 6 pp.

  • Norsang, G., L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlback, and P. Nema, 2009: Ground-based measurements and modeling of solar UV-B radiation in Lhasa, Tibet. Atmos. Environ., 43, 14981502, https://doi.org/10.1016/j.atmosenv.2008.11.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norsang, G., and Coauthors, 2014: Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau. Appl. Opt., 53, 736747, https://doi.org/10.1364/AO.53.000736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piedehierro, A. A., 2016: Medida y modelización de la radiación ultravioleta mediante el uso de radiómetros multicanal. Ph.D. thesis, Universidad de Extremadura, 254 pp.

  • Piedehierro, A. A., M. L. Cancillo, A. Serrano, M. Antón, and J. M. Vilaplana, 2016: Global sky irradiance calibration of multifilter UV radiometers. J. Geophys. Res. Atmos., 121, 427438, https://doi.org/10.1002/2015JD023935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seckmeyer, G., A. Bais, G. Bernhard, M. Blumthaler, B. Johnsen, K. Lantz, and R. McKenzie, 2010: Instruments to measure solar ultraviolet radiation. Part 3: Multi-channel filter instruments. WMO Rep. WMO/TD-1537, 51 pp.

  • Stamnes, K., J. Slusser, and M. Bowen, 1991: Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Appl. Opt., 30, 44184426, https://doi.org/10.1364/AO.30.004418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilaplana, J. M., 2004: Medida y análisis del ozono y de la radiación solar ultraviolet en INTA-El Arenosillo. Ph.D. thesis, Universidad de Valladolid, 247 pp.

  • Webb, A., J. Gröbner, and M. Blumthaler, 2006: A practical guide to operating broadband instruments measuring erythemally weighted irradiance. WMO and European Cooperation in Science and Technology Rep. EUR 22595, 26 pp.

  • WMO, 2014: Scientific assessment of ozone depletion: 2014. WMO Global Ozone Research and Monitoring Project Rep., 416 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 126 4
PDF Downloads 120 70 10

Long-Term Global Irradiance Calibration of Multifilter UV Radiometers

View More View Less
  • 1 Departamento de Física, and Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, Universidad de Extremadura, Badajoz, Spain
  • | 2 Departamento de Observación de la Tierra, Teledetección y Atmósfera, Estación de Sondeos Atmosféricos “El Arenosillo,” INTA, Mazagón, Huelva, Spain
  • | 3 Departamento de Física, and Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, Universidad de Extremadura, Badajoz, Spain
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Multifilter instruments such as the Norwegian Institute for Air Research (NILU)-UV Irradiance Meter (NILU-UV) are suitable for long-term monitoring of UV radiation, as long as their irradiance scale is maintained. The sensitivity of these instruments varies with time; thus, periodic standard absolute calibrations are required. However, standard calibrations may be insufficient to characterize the short-term variations of channels sensitivity. Therefore, results from standard calibrations have to be combined with the information derived from frequent relative calibrations, leading to a stable irradiance scale. This paper focuses on the long-term application of three calibration methods, hereinafter referred to as CC, CC2, and CC2(ϕ), as applied to the NILU-UV 119 multifilter radiometer. Here a generalization is proposed, consisting of using empirical functions in order to guarantee the accurate calibration of multifilter instruments over long time periods. These function-based methods need to be updated regularly to account for changes on instrument sensitivity. The changes in sensitivity of the NILU-UV 119 were found to be channel dependent. The detected drifts range from 23% to 42% for a 4-yr period of study. Time series of calibrated irradiance are obtained by applying the proposed methods. Results suggest that calibration methods using empirical functions perform better than classic calibration approaches that use constant calibration factors. When methods CC2 and CC2(ϕ) are applied, calibrated irradiances agree with the measurements of reference within ±5% for channel 305 and within ±3% for channels 312, 320, and 340.

Current affiliation: Finnish Meteorological Institute, Helsinki, Finland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana A. Piedehierro, piedehierro@unex.es

Abstract

Multifilter instruments such as the Norwegian Institute for Air Research (NILU)-UV Irradiance Meter (NILU-UV) are suitable for long-term monitoring of UV radiation, as long as their irradiance scale is maintained. The sensitivity of these instruments varies with time; thus, periodic standard absolute calibrations are required. However, standard calibrations may be insufficient to characterize the short-term variations of channels sensitivity. Therefore, results from standard calibrations have to be combined with the information derived from frequent relative calibrations, leading to a stable irradiance scale. This paper focuses on the long-term application of three calibration methods, hereinafter referred to as CC, CC2, and CC2(ϕ), as applied to the NILU-UV 119 multifilter radiometer. Here a generalization is proposed, consisting of using empirical functions in order to guarantee the accurate calibration of multifilter instruments over long time periods. These function-based methods need to be updated regularly to account for changes on instrument sensitivity. The changes in sensitivity of the NILU-UV 119 were found to be channel dependent. The detected drifts range from 23% to 42% for a 4-yr period of study. Time series of calibrated irradiance are obtained by applying the proposed methods. Results suggest that calibration methods using empirical functions perform better than classic calibration approaches that use constant calibration factors. When methods CC2 and CC2(ϕ) are applied, calibrated irradiances agree with the measurements of reference within ±5% for channel 305 and within ±3% for channels 312, 320, and 340.

Current affiliation: Finnish Meteorological Institute, Helsinki, Finland.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana A. Piedehierro, piedehierro@unex.es
Save