• Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 25642577, https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic, 1990: An examination of propagation effects in rainfall on polarimetric variables at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, and T. Schuur, 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973990, https://doi.org/10.1175/2009JAMC2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, and M. Xue, 2013: A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteor. Climatol., 52, 169185, https://doi.org/10.1175/JAMC-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1954: Provisional report on calculation of spatial covariance and autocorrelation of the pressure field. Rep. 5, Videnskaps-Akademiet, Institut for Vaeroch Klimaforskning, 12 pp.

  • Gandin, L., 1963: Objective Analysis of Meteorological Fields. Gidromet, 285 pp.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier, 2001: Three-dimensional simple adjoint velocity retrievals from single-Doppler radar. J. Atmos. Oceanic Technol., 18, 2638, https://doi.org/10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46, 15441564, https://doi.org/10.1175/JAM2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., G. Zhang, K. Zhao, S. Liu, L. Wen, G. Chen, and Z. Yang, 2019: Uncertainty in retrieving raindrop size distribution from polarimetric radar measurements. J. Atmos. Oceanic Technol., 36, 585605, https://doi.org/10.1175/JTECH-D-18-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. Y., 2000: Variational analysis using spatial filters. Mon. Wea. Rev., 128, 25882600, https://doi.org/10.1175/1520-0493(2000)128<2588:VAUSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181189, https://doi.org/10.2151/jmsj1965.75.1B_181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827851, https://doi.org/10.1175/WAF-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 26642682, https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawless, A. S., S. Gratton, and N. K. Nichols, 2005a: An investigation of incremental 4D-Var using non-tangent linear models. Quart. J. Roy. Meteor. Soc., 131, 459476, https://doi.org/10.1256/qj.04.20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawless, A. S., S. Gratton, and N. K. Nichols, 2005b: Approximate iterative methods for variational data assimilation. Int. J. Numer. Methods Fluids, 47, 11291135, https://doi.org/10.1002/fld.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, https://doi.org/10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor. Climatol., 53, 20172033, https://doi.org/10.1175/JAMC-D-13-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2016: Characterization of the 14 June 2011 Norman, Oklahoma, downburst through dual-polarization radar observations and hydrometeor classification. J. Appl. Meteor. Climatol., 55, 26352655, https://doi.org/10.1175/JAMC-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2011: NEXRAD Level-II radar data. NOAA/NCEI, accessed 20 April 2012, https://www.ncdc.noaa.gov/data-access/radar-data/nexrad.

  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, C. J., and Q. Xu, 1992: A simple-adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588598, https://doi.org/10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic, and Planetary Physics, Vol. 2, World Scientific, 256 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnic, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, https://doi.org/10.1175/1520-0426-19.3.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three dimensional wind and temperature fields from simulated single Doppler radar data. J. Atmos. Sci., 48, 876890, https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1971: Symmetry, unitarity and geometry in electromagnetic scattering. Phys. Rev., 3, 825839, https://doi.org/10.1103/PHYSREVD.3.825.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, E., V. Chandrasekar, and T. Ushio, 2014: Raindrop size distribution (DSD) retrieval for X-band dual-polarization radar. J. Atmos. Oceanic Technol., 31, 387403, https://doi.org/10.1175/JTECH-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2015: Comments on “Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters.” J. Appl. Meteor. Climatol., 54, 19701976, https://doi.org/10.1175/JAMC-D-14-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 117 6
PDF Downloads 222 137 15

Variational Retrieval of Rain Microphysics and Related Parameters from Polarimetric Radar Data with a Parameterized Operator

View More View Less
  • 1 School of Meteorology, and Advanced Radar Research Center, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 3 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assimilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters. Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation operators link the PRD to the physical parameters of water content W and mass-/volume-weighted diameter Dm for rain, which can be used to calculate other microphysical information. The S-band observation operators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to iteratively minimize the cost function to find an optimal estimate of Dm and W separately for each azimuth of radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Experiments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including ΦDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solution. PRD collected by the Norman, Oklahoma (KOUN) WSR-88D on 15 June 2011 were used to successfully test the retrieval method on radar data. The successful variational retrieval from the 2DVD and the radar data demonstrate the utility of the proposed method.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vivek N. Mahale, vmahale@ou.edu

Abstract

A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assimilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters. Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation operators link the PRD to the physical parameters of water content W and mass-/volume-weighted diameter Dm for rain, which can be used to calculate other microphysical information. The S-band observation operators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to iteratively minimize the cost function to find an optimal estimate of Dm and W separately for each azimuth of radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Experiments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including ΦDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solution. PRD collected by the Norman, Oklahoma (KOUN) WSR-88D on 15 June 2011 were used to successfully test the retrieval method on radar data. The successful variational retrieval from the 2DVD and the radar data demonstrate the utility of the proposed method.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vivek N. Mahale, vmahale@ou.edu
Save