• Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 11451163, https://doi.org/10.1175/JAMC-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benas, N., S. Finkensieper, M. Stengel, G.-J. van Zadelhoff, T. Hanschmann, R. Hollmann, and J. F. Meirink, 2017: The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data, 9, 415434, https://doi.org/10.5194/essd-9-415-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating the representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 19711991, https://doi.org/10.1175/2010JAMC2333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I. The single cloud layer. J. Atmos. Sci., 31, 233243, https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and Coauthors, 2016: BASTA: A 95-GHz FMCW Doppler radar for cloud and fog studies. J. Atmos. Oceanic Technol., 33, 10231038, https://doi.org/10.1175/JTECH-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, and J. T. Fasullo, 2015: Reexamining the relationship between climate sensitivity and the Southern Hemisphere radiation budget in CMIP models. J. Climate, 28, 92989312, https://doi.org/10.1175/JCLI-D-15-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamann, U., and Coauthors, 2014: Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Tech., 7, 28392867, https://doi.org/10.5194/amt-7-2839-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2011: ABI cloud height. NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 77 pp.

  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, L. B. Hande, and J. M. Haynes, 2012a: The structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Climate, 25, 25352546, https://doi.org/10.1175/JCLI-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012b: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, https://doi.org/10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2015: A-Train observations of maritime mid-latitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Climate, 28, 19201939, https://doi.org/10.1175/JCLI-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, D. Rosenfeld, R. Marchand, G. M. McFarquhar, and A. Protat, 2016: What is the role of sea surface temperature in modulating cloud and precipitation properties over the Southern Ocean? J. Climate, 29, 74537476, https://doi.org/10.1175/JCLI-D-15-0768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, https://doi.org/10.1175/BAMS-88-6-883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kniffka, A., M. Lockhoff, M. Stengel, and J. F. Meirink, 2013: Validation Report – SEVIRI cloud products, SAF/CM/DWD/VAL/SEV/CLD Issue 1, Rev. 1.2. Tech. rep., EUMETSAT Satellite Application Facility on Climate Monitoring, 88 pp.

  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 11981213, https://doi.org/10.1175/2009JTECHA1229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and A. Protat, 2018a: Clouds over the Southern Ocean as observed from the R/V Investigator during CAPRICORN. Part I: Cloud occurrence and phase partitioning. J. Appl. Meteor. Climatol., 57, 17831803, https://doi.org/10.1175/JAMC-D-17-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and A. Protat, 2018b: Clouds over the Southern Ocean as observed from the R/V Investigator during CAPRICORN. Part II: The properties of nonprecipitating stratocumulus. J. Appl. Meteor. Climatol., 57, 18051823, https://doi.org/10.1175/JAMC-D-17-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, https://doi.org/10.1029/2007JD008768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, https://doi.org/10.1175/2007JAMC1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen, 2008: Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett., 35, L12801, https://doi.org/10.1029/2008GL033947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, https://doi.org/10.1175/JAS-D-12-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud type and cloud phase, version 2.0. NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 86 pp., https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Phase.pdf.

  • Pavolonis, M. J., and A. K. Heidinger, 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43, 762778, https://doi.org/10.1175/2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., E. Schulz, L. Rikus, Z. Sun, Y. Xiao, and M. Keywood, 2017: Shipborne observations of the radiative effect of Southern Ocean clouds. J. Geophys. Res. Atmos., 122, 318328, https://doi.org/10.1002/2016JD026061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013: Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteor. Oceanogr. J., 63, 265284, https://doi.org/10.22499/2.6302.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, M., W. Thomas, P. Albert, M. Lockhoff, R. Weber, K.-G. Karlsson, and J. Fischer, 2009: The CMSAF and FUB cloud detection schemes for SEVIRI: Validation with synoptic data and initial comparison with MODIS and CALIPSO. J. Appl. Meteor. Climatol., 48, 301316, https://doi.org/10.1175/2008JAMC1982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.

  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, https://doi.org/10.1029/2005JD006990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., H. M. Deneke, and A. J. Feijt, 2008: Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteor. Climatol., 47, 206222, https://doi.org/10.1175/2007JAMC1661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 22, World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Royer, P., A. Bizard, L. Sauvage, and L. Thobois, 2014: Validation protocol and intercomparison campaigns with the R-MAN510 aerosol lidar. Proc. 17th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing, Auckland, New Zealand, University of Auckland, https://doi.org/10.13140/2.1.4778.1767.

    • Crossref
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J. H. Chae, P. Minnis, and M. McGill, 2004: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett., 31, L11102, https://doi.org/10.1029/2004GL019699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin, 2010: A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys., 10, 71977214, https://doi.org/10.5194/ACP-10-7197-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun-Mack, S., P. Minnis, Y. Chen, S. Kato, Y. Yi, S. C. Gibson, P. W. Heck, and D. M. Winker, 2014: Regional apparent boundary layer lapse rates determined from CALIPSO and MODIS data for cloud-height determination. J. Appl. Meteor. Climatol., 53, 9901011, https://doi.org/10.1175/JAMC-D-13-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., P. Stier, B. White, S. Finkensieper, and M. Stengel, 2017: Evaluating the diurnal cycle in cloud top temperature from SEVIRI. Atmos. Chem. Phys., 17, 70357053, https://doi.org/10.5194/acp-17-7035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, M., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, https://doi.org/10.1175/2009JTECHA1228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., J. C. Davenport, and R. A. Scofield, 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23, 221230, https://doi.org/10.1080/01431160010006935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., C. A. Hostetler, M. A. Vaughan, and A. H. Omar, 2006: CALIOP algorithm theoretical basis document: Part 1: CALIOP instrument, and algorithms overview. NASA Tech. Rep. PC-SCI-202 Part 1, 29 pp., https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf.

  • Wolters, E. L. A., R. A. Roebeling, and A. J. Feijt, 2008: Evaluation of cloud phase retrieval methods for SEVIRI on board Meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteor. Climatol., 47, 17231738, https://doi.org/10.1175/2007JAMC1591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 882 484 24
PDF Downloads 856 495 31

Evaluating Himawari-8 Cloud Products Using Shipborne and CALIPSO Observations: Cloud-Top Height and Cloud-Top Temperature

View More View Less
  • 1 University of Melbourne, and Australian Research Council Centre of Excellence for Climate Extremes (CLEX), University of Melbourne, Melbourne, Australia
  • | 2 Monash University, Melbourne, Victoria, Australia
  • | 3 Australian Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Cloud-top height (CTH) and cloud-top temperature (CTT) retrieved from the Himawari-8 observations are evaluated using the active shipborne radar–lidar observations derived from the 31-day Clouds, Aerosols, Precipitation Radiation and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment in 2016 and 1-yr observations from the spaceborne Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud product over a large sector of the Southern Ocean. The results show that the Himawari-8 CTH (CTT) retrievals agree reasonably well with both the shipborne estimates, with a correlation coefficient of 0.837 (0.820), a mean bias error of 0.226 km (−2.526°C), and an RMSE of 1.684 km (10.069°C). In the comparison with CALIOP, the corresponding quantities are found to be 0.786 (0.480), −0.570 km (1.343°C), and 2.297 km (25.176°C). The Himawari-8 CTH (CTT) generally falls between the physical CTHs observed by CALIOP and the shipborne radar–lidar estimates. However, major systematic biases are also identified. These errors include (i) a low (warm) bias in CTH (CTT) for warm liquid cloud type, (ii) a cold bias in CTT for supercooled liquid water cloud type, (iii) a lack of CTH at ~3 km that does not have a corresponding gap in CTT, (iv) a tendency of misclassifying some low-/mid-top clouds as cirrus and overlap cloud types, and (v) a saturation of CTH (CTT) around 10 km (−40°C), particularly for cirrus and overlap cloud types. Various challenges that underpin these biases are also explored, including the potential of parallax bias, low-level inversion, and cloud heterogeneity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Huang, yi.huang4@unimelb.edu.au

Abstract

Cloud-top height (CTH) and cloud-top temperature (CTT) retrieved from the Himawari-8 observations are evaluated using the active shipborne radar–lidar observations derived from the 31-day Clouds, Aerosols, Precipitation Radiation and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment in 2016 and 1-yr observations from the spaceborne Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud product over a large sector of the Southern Ocean. The results show that the Himawari-8 CTH (CTT) retrievals agree reasonably well with both the shipborne estimates, with a correlation coefficient of 0.837 (0.820), a mean bias error of 0.226 km (−2.526°C), and an RMSE of 1.684 km (10.069°C). In the comparison with CALIOP, the corresponding quantities are found to be 0.786 (0.480), −0.570 km (1.343°C), and 2.297 km (25.176°C). The Himawari-8 CTH (CTT) generally falls between the physical CTHs observed by CALIOP and the shipborne radar–lidar estimates. However, major systematic biases are also identified. These errors include (i) a low (warm) bias in CTH (CTT) for warm liquid cloud type, (ii) a cold bias in CTT for supercooled liquid water cloud type, (iii) a lack of CTH at ~3 km that does not have a corresponding gap in CTT, (iv) a tendency of misclassifying some low-/mid-top clouds as cirrus and overlap cloud types, and (v) a saturation of CTH (CTT) around 10 km (−40°C), particularly for cirrus and overlap cloud types. Various challenges that underpin these biases are also explored, including the potential of parallax bias, low-level inversion, and cloud heterogeneity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Huang, yi.huang4@unimelb.edu.au
Save