• Alexandrov, V., S. Sandven, J. Wahlin, and O. Johannessen, 2010: The relation between sea ice thickness and freeboard in the Arctic. Cryosphere, 4, 373380, https://doi.org/10.5194/tc-4-373-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allard, R. A., and Coauthors, 2018: Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system. Adv. Space Res., 62, 12651280, https://doi.org/10.1016/j.asr.2017.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auclair, J.-P., J.-F. Lemieux, L. B. Tremblay, and H. Ritchie, 2017: Implementation of Newton’s method with an analytical Jacobian to solve the 1D sea ice momentum equation. J. Comput. Phys., 340, 6984, https://doi.org/10.1016/j.jcp.2017.02.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouillon, S., and P. Rampal, 2015a: On producing sea ice deformation data sets from SAR-derived sea ice motion. Cryosphere, 9, 663673, https://doi.org/10.5194/tc-9-663-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouillon, S., and P. Rampal, 2015b: Presentation of the dynamical core of neXtSIM, a new sea ice model. Ocean Modell., 91, 2337, https://doi.org/10.1016/j.ocemod.2015.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouillon, S., T. Fichefet, V. Legat, and G. Madec, 2013: The elastic–viscous–plastic method revisited. Ocean Modell., 71, 212, https://doi.org/10.1016/j.ocemod.2013.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, https://doi.org/10.1175/2010JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer, 303–343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S., Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter, 2015: Finite-element sea ice model (FESIM), version 2. Geosci. Model Dev., 8, 17471761, https://doi.org/10.5194/gmd-8-1747-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., 1997: Comments on “Stability of the viscous–plastic sea ice rheology.” J. Phys. Oceanogr., 27, 480481, https://doi.org/10.1175/1520-0485(1997)027<0480:COSOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenty, I., D. Menemenlis, and H. Zhang, 2017: Global coupled sea ice-ocean state estimation. Climate Dyn., 49, 931956, https://doi.org/10.1007/s00382-015-2796-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fily, M., and D. Rothrock, 1987: Sea ice tracking by nested correlations. IEEE Trans. Geosci. Remote Sens., GE-25, 570580, https://doi.org/10.1109/TGRS.1987.289836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fomel, S., 2007: Shaping regularization in geophysical-estimation problems. Geophysics, 72, R29R36, https://doi.org/10.1190/1.2433716.

  • Forget, G., J.-M. Campin, P. Heimbach, C. Hill, R. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodier, J. N., and P. G. Hodge, 1958: Elasticity and Plasticity: The Mathematical Theory of Elasticity. Vol. 1. John Wiley and Sons, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Gray, J., and P. D. Killworth, 1995: Stability of the viscous-plastic sea ice rheology. J. Phys. Oceanogr., 25, 971978, https://doi.org/10.1175/1520-0485(1995)025<0971:SOTVPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, M., and H. Fischer, 1999: Sea ice dynamics in the Weddell Sea simulated with an optimized model. J. Geophys. Res., 104, 11 15111 162, https://doi.org/10.1029/1999JC900047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., 2008: The MITgcm/ECCO adjoint modelling infrastructure. CLIVAR Exchanges, No. 44, International CLIVAR Project Office, Southampton, United Kingdom, 13–17.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1977: A viscous sea ice law as a stochastic average of plasticity. J. Geophys. Res., 82, 39323938, https://doi.org/10.1029/JC082i027p03932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, and J. E. Walsh, 1982: On modeling seasonal and interannual fluctuations of Arctic sea ice. J. Phys. Oceanogr., 12, 15141523, https://doi.org/10.1175/1520-0485(1982)012<1514:OMSAIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.1. Los Alamos National Laboratory Rep. LA-CC-06-012, 76 pp.

  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, https://doi.org/10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juricke, S., P. Lemke, R. Timmermann, and T. Rackow, 2013: Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling. J. Climate, 26, 37853802, https://doi.org/10.1175/JCLI-D-12-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komarov, A. S., and D. G. Barber, 2014: Sea ice motion tracking from sequential dual-polarization RadarSat-2 images. IEEE Trans. Geosci. Remote Sens., 52, 121136, https://doi.org/10.1109/TGRS.2012.2236845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • König Beatty, C., and D. M. Holland, 2010: Modeling landfast sea ice by adding tensile strength. J. Phys. Oceanogr., 40, 185198, https://doi.org/10.1175/2009JPO4105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korosov, A. A., and Coauthors, 2018: A new tracking algorithm for sea ice age distribution estimation. Cryosphere, 12, 20732085, https://doi.org/10.5194/tc-12-2073-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreyscher, M., M. Harder, and P. Lemke, 1997: First results of the Sea-Ice Model Intercomparison Project (SIMIP). Ann. Glaciol., 25, 811, https://doi.org/10.3189/S0260305500013719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreyscher, M., M. Harder, P. Lemke, and G. M. Flato, 2000: Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations. J. Geophys. Res., 105, 11 29911 320, https://doi.org/10.1029/1999JC000016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, https://doi.org/10.1002/grl.50193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, https://doi.org/10.3402/tellusa.v38i2.11706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., B. Tremblay, S. Thomas, J. Sedláček, and L. A. Mysak, 2008: Using the preconditioned generalized minimum residual (GMRES) method to solve the sea-ice momentum equation. J. Geophys. Res., 113, C10004, https://doi.org/10.1029/2007JC004680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., F. Dupont, P. Blain, F. Roy, G. C. Smith, and G. M. Flato, 2016: Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. J. Geophys. Res. Oceans, 121, 73547368, https://doi.org/10.1002/2016JC012006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and J. Zhang, 2006: Assimilation of ice concentration in an ice–ocean model. J. Atmos. Oceanic Technol., 23, 742749, https://doi.org/10.1175/JTECH1871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lisæter, K., G. Evensen, and S. Laxon, 2007: Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model. J. Geophys. Res., 112, C07023, https://doi.org/10.1029/2006JC003786.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, M. Vancoppenolle, P. Mathiot, and C. König Beatty, 2011: On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere, 5, 687699, https://doi.org/10.5194/tc-5-687-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, and H. Goosse, 2015: Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Modell., 88, 1625, https://doi.org/10.1016/j.ocemod.2014.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J.-M. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Océan, Ramonville-Saint-Agne, France, 1321.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., S. W. Laxon, D. L. Feltham, and D. J. Cresswell, 2006: Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J. Climate, 19, 10891108, https://doi.org/10.1175/JCLI3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murashkin, D., G. Spreen, M. Huntemann, and W. Dierking, 2018: Method for detection of leads from Sentinel-1 SAR images. Ann. Glaciol., 59, 124136, https://doi.org/10.1017/aog.2018.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumaier, A., 1998: Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM Rev., 40, 636666, https://doi.org/10.1137/S0036144597321909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posey, P., and Coauthors, 2015: Assimilating high horizontal resolution sea ice concentration data into the US Navy’s ice forecast systems: Arctic Cap Nowcast/Forecast System (ACNFS) and the Global Ocean Forecast System (GOFS 3.1). Cryosphere, 9, 17351745, https://doi.org/10.5194/tcd-9-2339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, R. S., 2005: Stability of sea ice dynamics models: Viscous-plastic rheology, replacement closure, and tensile cutoff. J. Geophys. Res., 110, C12010, https://doi.org/10.1029/2003JC001875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampal, P., S. Bouillon, E. Ólason, and M. Morlighem, 2016: neXtSIM: A new Lagrangian sea ice model. Cryosphere, 10, 10551073, https://doi.org/10.5194/tc-10-1055-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saad, Y., and M. H. Schultz, 1986: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856869, https://doi.org/10.1137/0907058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., F. Counillon, L. Bertino, K. Lisæter, P. Oke, and A. Korablev, 2012: TOPAZ4: An ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci., 8, 633656, https://doi.org/10.5194/os-8-633-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulkes, R., 1996: Asymptotic stability of the viscous–plastic sea ice rheology. J. Phys. Oceanogr., 26, 279283, https://doi.org/10.1175/1520-0485(1996)026<0279:ASOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwegmann, S., C. Haas, C. Fowler, and R. Gerdes, 2011: A comparison of satellite-derived sea-ice motion with drifting-buoy data in the Weddell Sea, Antarctica. Ann. Glaciol., 52, 103110, https://doi.org/10.3189/172756411795931813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. H. Morison, and N. Untersteiner, 1989: The partition of air-ice-ocean momentum exchange as a function of ice concentration, floe size, and draft. J. Geophys. Res., 94, 12 73912 750, https://doi.org/10.1029/JC094iC09p12739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, N., 2001: Introduction of variable drag coefficients into sea-ice models. Ann. Glaciol., 33, 181186, https://doi.org/10.3189/172756401781818149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., R. Kwok, R. Gerdes, F. Kauker, and M. Karcher, 2015: Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J. Geophys. Res. Oceans, 120, 52855301, https://doi.org/10.1002/2015JC010810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilling, R. L., A. Ridout, and A. Shepherd, 2018: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res., 62, 12031225, https://doi.org/10.1016/j.asr.2017.10.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timco, G., and W. Weeks, 2010: A review of the engineering properties of sea ice. Cold Reg. Sci. Technol., 60, 107129, https://doi.org/10.1016/j.coldregions.2009.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timoshenko, S., and J. Goodier, 1951: Theory of Elasticity. McGraw-Hill, 567 pp.

  • Toyota, T., and N. Kimura, 2018: An examination of the sea ice rheology for seasonal ice zones based on ice drift and thickness observations. J. Geophys. Res. Oceans, 123, 14061428, https://doi.org/10.1002/2017JC013627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, L., and M. Hakakian, 2006: Estimating the sea ice compressive strength from satellite-derived sea ice drift and NCEP reanalysis data. J. Phys. Oceanogr., 36, 21652172, https://doi.org/10.1175/JPO2954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschudi, M., W. Meier, J. Stewart, C. Fowler, and J. Maslanik, 2019: Polar Pathfinder daily 25 km EASE-Grid sea ice motion vectors, version 4 dataset 0116. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 17 March 2019, https://doi.org/10.5067/INAWUWO7QH7B.

    • Crossref
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. M. Maqueda, 2009: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 3353, https://doi.org/10.1016/j.ocemod.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., J. Debernard, A. K. Sperrevik, P. E. Isachsen, and T. Lavergne, 2013: A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS. Ann. Glaciol., 54, 812, https://doi.org/10.3189/2013AoG62A138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, W. F., and A. Assur, 1967: The mechanical properties of sea ice. Cold Regions Research and Engineering Lab Tech. Rep., 96 pp.

  • Yaremchuk, M., T. Townsend, G. Panteleev, D. Hebert, and R. Allard, 2019: Advancing short-term forecasts of ice conditions in the Beaufort Sea. J. Geophys. Res. Oceans, 124, 807820, https://doi.org/10.1029/2018JC014581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakhvatkina, N. Y., V. Y. Alexandrov, O. M. Johannessen, S. Sandven, and I. Y. Frolov, 2013: Classification of sea ice types in ENVISAT synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens., 51, 25872600, https://doi.org/10.1109/TGRS.2012.2212445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakhvatkina, N. Y., A. Korosov, S. Muckenhuber, S. Sandven, and M. Babiker, 2017: Operational algorithm for ice–water classification on dual-polarized RadarSat-2 images. Cryosphere, 11, 3346, https://doi.org/10.5194/tc-11-33-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 124 10
PDF Downloads 140 89 16

Toward Optimization of Rheology in Sea Ice Models through Data Assimilation

View More View Less
  • 1 Department of Atmospheric Science, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 3 Department of Civil and Environmental Engineering, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 4 Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sea ice models that allow for deformation are primarily based on rheological formulations originally developed in the 1970s. In both the original viscoplastic (VP) and elastic-VP schemes, the internal pressure term is modeled as a function of variable sea ice thickness and concentration with spatially and temporally constant empirical parameters for ice strength. This work considers a spatially variable extension of the rheology parameters as well as wind stress in a one-dimensional VP sea ice data assimilation system. In regions of total ice cover, experiments that assimilate synthetic ice-state observations using variable rheological parameters show larger improvements than equivalent experiments using homogeneous parameters. For partially ice-covered regions where internal ice stresses are relatively unimportant, experiments assimilating synthetic sea ice velocity observations demonstrate reasonable reconstruction of spatially variable wind stresses. These results suggest practical benefits for sea ice–state reconstruction and forecasts by using sea ice velocity, thickness, and concentration observations to optimize spatially varying rheological parameters and to improve wind stress forcing.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Department of Bioengineering, University of Colorado Denver, Aurora, Colorado.

Corresponding author: J. N. Stroh, jnstroh@alaska.edu

Abstract

Sea ice models that allow for deformation are primarily based on rheological formulations originally developed in the 1970s. In both the original viscoplastic (VP) and elastic-VP schemes, the internal pressure term is modeled as a function of variable sea ice thickness and concentration with spatially and temporally constant empirical parameters for ice strength. This work considers a spatially variable extension of the rheology parameters as well as wind stress in a one-dimensional VP sea ice data assimilation system. In regions of total ice cover, experiments that assimilate synthetic ice-state observations using variable rheological parameters show larger improvements than equivalent experiments using homogeneous parameters. For partially ice-covered regions where internal ice stresses are relatively unimportant, experiments assimilating synthetic sea ice velocity observations demonstrate reasonable reconstruction of spatially variable wind stresses. These results suggest practical benefits for sea ice–state reconstruction and forecasts by using sea ice velocity, thickness, and concentration observations to optimize spatially varying rheological parameters and to improve wind stress forcing.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Department of Bioengineering, University of Colorado Denver, Aurora, Colorado.

Corresponding author: J. N. Stroh, jnstroh@alaska.edu
Save