• Amores, A., O. Melnichenko, and N. Maximenko, 2017: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum. J. Geophys. Res. Oceans, 122, 2341, https://doi.org/10.1002/2016JC012256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baird, M. E., and Coauthors, 2011: The effect of surface flooding on the physical–biogeochemical dynamics of a warm-core eddy off southeast Australia. Deep-Sea Res. II, 58, 592605, https://doi.org/10.1016/j.dsr2.2010.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, J., A. Pascual, S. Ruiz, Y. Faugère, and J. Tintoré, 2010: Coastal and mesoscale dynamics characterization using altimetry and gliders: A case study in the Balearic Sea. J. Geophys. Res., 115, C10029, https://doi.org/10.1029/2009JC006087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 208 pp., https://data.nodc.noaa.gov/woa/WOD13/DOC/wod13_intro.pdf.

  • Chaigneau, A., M. L. Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Hu, K.-f. Mao, and Y. Li, 2018: Detailed investigation of the three-dimensional structure of a mesoscale cold eddy in the Kuroshio extension region. J. Oper. Oceanogr., 11, 8799, https://doi.org/10.1080/1755876X.2018.1505069.

    • Search Google Scholar
    • Export Citation
  • Chu, X., H. Xue, Y. Qi, G. Chen, Q. Mao, D. Wang, and F. Chai, 2014: An exceptional anticyclonic eddy in the South China Sea in 2010. J. Geophys. Res. Oceans, 119, 881897, https://doi.org/10.1002/2013JC009314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotroneo, Y., G. Aulicino, S. Ruiz, A. Pascual, G. Budillon, G. Fusco, and J. Tintoré, 2016: Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: Effects on the mixed layer depth and biochemistry. J. Mar. Syst., 162, 7388, https://doi.org/10.1016/j.jmarsys.2015.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, A. R., F. Veron, and M. J. Oliver, 2019: Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage. Deep-Sea Res. I, 146, 91102, https://doi.org/10.1016/J.DSR.2019.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T., E. C. Itsweire, M. Moline, and M. Perry, 2008: Introduction to the Limnology and Oceanography special issue on autonomous and Lagrangian platforms and sensors (ALPS). Limnol. Oceanogr., 53, 20572061, https://doi.org/10.4319/lo.2008.53.5_part_2.2057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D., P. Brandt, P. Chang, F. Schütte, X. Yang, J. Yan, and J. Zeng, 2017: Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. J. Geophys. Res. Oceans, 122, 97959813, https://doi.org/10.1002/2017JC013303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, https://doi.org/10.1109/48.972073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/SDATA.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Q., H. Zhan, S. Cai, Y. He, G. Huang, and W. Zhan, 2018: A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans, 123, 49064929, https://doi.org/10.1029/2018JC014054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, B. A., and D. M. Fratantoni, 2009: A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. J. Geophys. Res., 114, C10020, https://doi.org/10.1029/2009JC005317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., J. Gan, Z. Sun, J. Zhu, and M. Dai, 2011: Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res., 116, C05016, https://doi.org/10.1029/2010JC006810.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., and Q. Liu, 2004: Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr., 60, 10631069, https://doi.org/10.1007/s10872-005-0014-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., 2007: Nutrient biogeochemistry of mesoscale eddies in the Sargasso Sea. Ph.D. dissertation, University of Miami, 186 pp.

  • Lin, X., C. Dong, D. Chen, Y. Liu, J. Yang, B. Zou, and Y. Guan, 2015: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Res. I, 99, 4664, https://doi.org/10.1016/j.dsr.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., Y.-h. Wang, Z.-l. Wu, and S.-x. Wang, 2017: Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II. China Ocean Eng., 31, 5562, https://doi.org/10.1007/s13344-017-0007-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., X. Chen, J. Yu, D. Xu, and C. Sun, 2019: Kuroshio intrusion into the South China Sea with an anticyclonic eddy: Evidence from underwater glider observation. J. Oceanol. Limnol., 37, 14691480, https://doi.org/10.1007/S00343-019-8290-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, K. H., and J. R. Lazier, 2013: Dynamics of Marine Ecosystems: Biological–Physical Interactions in the Oceans. John Wiley and Sons, 512 pp.

  • Martin, J., C. Lee, C. Eriksen, C. Ladd, and N. Kachel, 2009: Glider observations of kinematics in a Gulf of Alaska eddy. J. Geophys. Res., 114, C12021, https://doi.org/10.1029/2008JC005231.

    • Search Google Scholar
    • Export Citation
  • Nardelli, B. B., 2013: Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Oceans, 118, 56095624, https://doi.org/10.1002/jgrc.20345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., V. S. Kuwahara, T. D. Dickey, Y. M. Rii, and R. R. Bidigare, 2008: Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawaii: Cyclone opal observations during E-Flux III. Deep-Sea Res. II, 55, 12521274, https://doi.org/10.1016/j.dsr2.2008.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petillo, S., H. Schmidt, and A. Balasuriya, 2011: Constructing a distributed AUV network for underwater plume-tracking operations. Int. J. Distrib. Sens. Networks, 8, 191235, https://doi.org/10.1155/2012/191235.

    • Search Google Scholar
    • Export Citation
  • Qiu, C., H. Mao, Y. Wang, J. Yu, D. Su, and S. Lian, 2018: An irregularly shaped warm eddy observed by Chinese underwater gliders. J. Oceanogr., 75, 139148, https://doi.org/10.1007/S10872-018-0490-0.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1983: Eddy kinetic energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 43554367, https://doi.org/10.1029/JC088iC07p04355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J., R. E. Davis, W. Owens, and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, https://doi.org/10.1109/48.972076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., P. Xiu, H. Xue, J. Yao, and J. Yu, 2016: Glider-observed anticyclonic eddy in northern South China Sea. Aquat. Ecosyst. Health Manage., 19, 233241, https://doi.org/10.1080/14634988.2016.1208028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., J. Chen, S. Li, Q. Wang, J. Yu, and D. Wang, 2019: Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017. Sci. China Earth Sci., 62, 451458, https://doi.org/10.1007/s11430-018-9239-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, S., T. Kanzow, G. Krahmann, R. J. Greatbatch, M. Dengler, and G. Lavik, 2016: The formation of a subsurface anticyclonic eddy in the Peru-Chile undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. Oceans, 121, 476501, https://doi.org/10.1002/2015JC010878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., F. Wang, Y. Li, and P. Lin, 2013: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J. Geophys. Res. Oceans, 118, 19061925, https://doi.org/10.1002/jgrc.20164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., W. Han, and D. Hu, 2006: Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111, C11007, https://doi.org/10.1029/2005JC003412.

    • Search Google Scholar
    • Export Citation
  • Zhang, W.-Z., Q. Ni, and H. Xue, 2018: Composite eddy structures on both sides of the Luzon Strait and influence factors. Ocean Dyn., 68, 15271541, https://doi.org/10.1007/s10236-018-1207-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Zhang, W. Wang, and R. X. Huang, 2013a: Universal structure of mesoscale eddies in the ocean. Geophys. Res. Lett., 40, 36773681, https://doi.org/10.1002/grl.50736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, J. Tian, and X. Liang, 2013b: A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Oceans, 118, 64796494, https://doi.org/10.1002/2013JC008994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, B. Qiu, and J. Tian, 2017: Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr., 47, 12431259, https://doi.org/10.1175/JPO-D-16-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, and X. Lin, 2018: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic. Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., A. Bracco, J. Tian, J. Dong, W. Zhao, and Z. Zhang, 2017: Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Sci. Rep., 7, 44011, https://doi.org/10.1038/srep44011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 253 18
PDF Downloads 453 294 28

Constructing the Three-Dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders

View More View Less
  • 1 School of Mechanical Engineering, Tianjin University, Tianjin, China
  • | 2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
  • | 3 School of Mechanical Engineering, Tianjin University, Tianjin, and Joint Laboratory of Ocean Observing and Detection, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Mesoscale eddies have great influence on heat and material transport in the ocean and thus play an important role in modulating the global climate variability. However, our understanding of their fine three-dimensional (3D) thermohaline and biogeochemical structure remains incomplete because of the scarcity of high-resolution measurements. This research aims to construct the fine 3D structure of an anticyclonic eddy in the northern South China Sea (NSCS) to validate the effectiveness of a glider network for observing mesoscale eddies. Twelve Petrel gliders were deployed in NSCS during August 2017 to gather fine information of an anticyclonic eddy. By combining the high-resolution in situ glider data and the sea level anomaly data, we have constructed a detailed 3D structure of the eddy. The analysis results of the absolute dynamic topography map and the water mass comparison imply that the anticyclonic eddy may generate from eddy shedding of the Kuroshio loop current. The maximum potential temperature anomaly (over 3°C) appears at the thermocline, and the maximum salinity anomaly (~0.8 psu) exists at ~50 m. The maximum value of the dissolved oxygen concentration (~7.5 mg L−1) appears at 50–80 m. The maximum chlorophyll concentration (~1.2 μg L−1) lies at 80–120 m, just below that of the dissolved oxygen concentration. The colored dissolved organic matter concentration increases with depth, with the mean value being less than 1.23 ppb above 50 m and beyond 2.2 ppb at 500–800 m. The results verify the capability of the glider network to observe a fine-scaled 3D structure of mesoscale eddies and will provide a useful guide for future eddy observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuxin Wang, shuxinw@tju.edu.cn

Abstract

Mesoscale eddies have great influence on heat and material transport in the ocean and thus play an important role in modulating the global climate variability. However, our understanding of their fine three-dimensional (3D) thermohaline and biogeochemical structure remains incomplete because of the scarcity of high-resolution measurements. This research aims to construct the fine 3D structure of an anticyclonic eddy in the northern South China Sea (NSCS) to validate the effectiveness of a glider network for observing mesoscale eddies. Twelve Petrel gliders were deployed in NSCS during August 2017 to gather fine information of an anticyclonic eddy. By combining the high-resolution in situ glider data and the sea level anomaly data, we have constructed a detailed 3D structure of the eddy. The analysis results of the absolute dynamic topography map and the water mass comparison imply that the anticyclonic eddy may generate from eddy shedding of the Kuroshio loop current. The maximum potential temperature anomaly (over 3°C) appears at the thermocline, and the maximum salinity anomaly (~0.8 psu) exists at ~50 m. The maximum value of the dissolved oxygen concentration (~7.5 mg L−1) appears at 50–80 m. The maximum chlorophyll concentration (~1.2 μg L−1) lies at 80–120 m, just below that of the dissolved oxygen concentration. The colored dissolved organic matter concentration increases with depth, with the mean value being less than 1.23 ppb above 50 m and beyond 2.2 ppb at 500–800 m. The results verify the capability of the glider network to observe a fine-scaled 3D structure of mesoscale eddies and will provide a useful guide for future eddy observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuxin Wang, shuxinw@tju.edu.cn
Save