• Berk, A., and Coauthors, 2006: MODTRAN5: 2006 update. Proc. SPIE, 6233, 62331F, https://doi.org/10.1117/12.665077.

  • Bishop, J. K. B., W. B. Rossow, and E. G. Dutton, 1997: Surface solar irradiance from the International Satellite Cloud Climatology Project 1983-1991. J. Geophys. Res., 102, 68836910, https://doi.org/10.1029/96JD03865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., P. B. Krummel, and R. M. Mitchell, 1998: Correction of aircraft pyranometer measurements for diffuse radiance and alignment errors. J. Geophys. Res., 103, 16 75316 758, https://doi.org/10.1029/98JD01431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., R. F. Frouin, and C. Gautier, 1991: Downwelling longwave irradiance at the ocean surface: An assessment of in situ measurements and parameterizations. J. Appl. Meteor., 30, 1731, https://doi.org/10.1175/1520-0450(1991)030<0017:DLIATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, S. P., and Coauthors, 2000: Comparisons of aircraft, ship, and buoy radiation and SST measurements from TOGA COARE. J. Geophys. Res., 105, 15 62715 652, https://doi.org/10.1029/2000JD900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canepa, E., S. Pensieri, R. Bozzano, M. Faimali, P. Traverso, and L. Cavaleri, 2015: The ODAS Italia 1 buoy: More than forty years of activity in the Ligurian Sea. Prog. Oceanogr., 135, 4863, https://doi.org/10.1016/j.pocean.2015.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casasanta, G., A. di Sarra, D. Meloni, F. Monteleone, G. Pace, S. Piacentino, and D. Sferlazzo, 2011: Large aerosol effects on ozone photolysis in the Mediterranean. Atmos. Environ., 45, 39373943, https://doi.org/10.1016/j.atmosenv.2011.04.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciardini, V., and Coauthors, 2016: Global and Mediterranean climate change: A short summary. Ann. Ist. Super. Sanita, 52, 325337, https://doi.org/10.4415/ANN_16_03_04.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., C. W. Fairall, and M. J. McPhaden, 2006: An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J. Geophys. Res., 111, C06038, https://doi.org/10.1029/2005JC003324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Biagio, C., A. di Sarra, D. Meloni, F. Monteleone, S. Piacentino, and D. Sferlazzo, 2009: Measurements of Mediterranean aerosol radiative forcing and influence of the single scattering albedo. J. Geophys. Res., 114, D06211, https://doi.org/10.1029/2008JD011037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • di Sarra, A., G. Pace, D. Meloni, L. De Silvestri, S. Piacentino, and F. Monteleone, 2008: Surface shortwave radiative forcing of different aerosol types in the central Mediterranean. Geophys. Res. Lett., 35, L02714, https://doi.org/10.1029/2007GL032395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • di Sarra, A., C. Di Biagio, D. Meloni, F. Monteleone, G. Pace, S. Pugnaghi, and D. Sferlazzo, 2011: Shortwave and longwave radiative effects of the intense Saharan dust event of 25–26 March, 2010, at Lampedusa (Mediterranean Sea). J. Geophys. Res., 116, D23209, https://doi.org/10.1029/2011JD016238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubois, C., and Coauthors, 2012: Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dyn., 39, 18591884, https://doi.org/10.1007/s00382-011-1261-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., A. T. Evan, H. P. Freitag, S. Brown, and M. J. McPhaden, 2013: Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Oceanic Technol., 30, 14141432, https://doi.org/10.1175/JTECH-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gautier, C., 1988: Surface solar irradiance in the tropical Pacific during Tropic Heat: Comparison between in situ measurements and satellite estimates. J. Climate, 1, 600608, https://doi.org/10.1175/1520-0442(1988)001<0600:SSIITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, C. W. Fairall, and R. A. Weller, 2009: Climatology of surface meteorology, surface fluxes, cloud fraction, and radiative forcing over the southeast Pacific from buoy observations. J. Climate, 22, 55275540, https://doi.org/10.1175/2009JCLI2961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, C., and C. Garrett, 1994: Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget. J. Geophys. Res., 99, 51195134, https://doi.org/10.1029/93JC03069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habte, A., M. Sengupta, A. Andreas, S. Wilcox, and T. Stoffel, 2016: Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements. Sol. Energy, 133, 372393, https://doi.org/10.1016/j.solener.2016.03.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., Y. Qiao, Y. Wang, Y. Fang, and W. Yi, 2011: A new parameterization of spectral and broadband ocean surface albedo. Opt. Express, 19, 26 42926 443, https://doi.org/10.1364/OE.19.026429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and J. E. DeVault, 1986: On irradiance measurement errors at sea due to tilt of pyranometers. J. Atmos. Oceanic Technol., 3, 740745, https://doi.org/10.1175/1520-0426(1986)003<0740:OIMEAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling, shortwave cloud effects. J. Geophys. Res., 105, 152 609152 626, https://doi.org/10.1029/2000JD900077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., A. Bucholtz, H. Jonsson, B. Schmid, A. Vogelmann, and J. Wood, 2010: A method of correcting for tilt from horizontal in downwelling shortwave irradiance measurements on moving platforms. Open Atmos. Sci. J., 4, 7887, https://doi.org/10.2174/1874282301004010078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacWhorter, M. A., and R. A. Weller, 1991: Error in measurements of incoming shortwave radiation made from ships and buoys. J. Atmos. Oceanic Technol., 8, 108117, https://doi.org/10.1175/1520-0426(1991)008<0108:EIMOIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailler, S., and Coauthors, 2016: On the radiative impact of aerosols on photolysis rates: Comparison of simulations and observations in the Lampedusa Island during the CharMEx/ADRIMED campaign. Atmos. Chem. Phys., 16, 12191244, https://doi.org/10.5194/acp-16-1219-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, K., T. Takashima, and Y. Takayama, 1988: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ., 24, 313329, https://doi.org/10.1016/0034-4257(88)90032-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mateos, D., A. di Sarra, D. Meloni, C. Di Biagio, and D. M. Sferlazzo, 2011: Experimental determination of cloud influence on the spectral UV radiation and implications for biological effects. J. Atmos. Sol. Terr. Phys., 73, 17391746, https://doi.org/10.1016/j.jastp.2011.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsoukas, C., A. C. Banks, N. Hatzianastassiou, K. G. Pavlakis, D. Hatzidimitriou, E. Drakakis, P. W. Stackhouse, and I. Vardavas, 2005: Seasonal heat budget of the Mediterranean Sea. J. Geophys. Res., 110, C12008, https://doi.org/10.1029/2004JC002566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medovaya, M., D. E. Waliser, R. A. Weller, and M. J. McPhaden, 2002: Assessing ocean buoy shortwave observations using clear-sky model calculations. J. Geophys. Res., 107, 3014, https://doi.org/10.1029/2000JC000558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meloni, D., A. di Sarra, J. R. Herman, F. Monteleone, and S. Piacentino, 2005: Comparison of ground-based and TOMS erythemal UV doses at the island of Lampedusa in the period 1998-2003: Role of tropospheric aerosols. J. Geophys. Res., 110, D01202, https://doi.org/10.1029/2004JD005283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meloni, D., A. di Sarra, G. Biavati, J. J. DeLuisi, F. Monteleone, G. Pace, S. Piacentino, and D. Sferlazzo, 2007: Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos. Environ., 41, 30413056, https://doi.org/10.1016/j.atmosenv.2006.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meloni, D., C. Di Biagio, A. di Sarra, F. Monteleone, G. Pace, and D. M. Sferlazzo, 2012: Accounting for the solar radiation influence on downward longwave irradiance measurements by pyrgeometers. J. Atmos. Oceanic Technol., 29, 16291643, https://doi.org/10.1175/JTECH-D-11-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meloni, D., and Coauthors, 2015: Altitude-resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer. J. Geophys. Res. Atmos., 120, 33863407, https://doi.org/10.1002/2014JD022312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meloni, D., and Coauthors, 2018: Determining the infrared radiative effects of Saharan dust: A radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmos. Chem. Phys., 18, 43774401, https://doi.org/10.5194/acp-18-4377-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., L. C. Harrison, and W. E. Berkheiser III, 1995: Cosine response characteristics of some radiometric and photometric sensors. Sol. Energy, 54, 397402, https://doi.org/10.1016/0038-092X(95)00017-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nabat, P., and Coauthors, 2015: Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean. Atmos. Chem. Phys., 15, 33033326, https://doi.org/10.5194/acp-15-3303-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascal, R. W., and S. A. Josey, 2000: Accurate radiometric measurement of the atmospheric longwave flux at the sea surface. J. Atmos. Oceanic Technol., 17, 12711282, https://doi.org/10.1175/1520-0426(2000)017<1271:ARMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettenuzzo, D., W. G. Large, and N. Pinardi, 2010: On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J. Geophys. Res., 115, C06022, https://doi.org/10.1029/2009JC005631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipona, R., C. Fröhlich, and C. Betz, 1995: Characterization of pyrgeometers and the accuracy of atmospheric longwave radiation measurements. Appl. Opt., 34, 15981605, https://doi.org/10.1364/AO.34.001598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipona, R., and Coauthors, 2001: Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J. Geophys. Res., 106, 28 12928 141, https://doi.org/10.1029/2000JD000196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., H. Wang, and S. A. Grodsky, 2009: How good are ocean buoy observations of radiative fluxes? Geophys. Res. Lett., 36, L10811, https://doi.org/10.1029/2009GL037840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ravaioli, M., and Coauthors, 2016: The RITMARE Italian Fixed-Point Observatory Network (IFON) for marine environmental monitoring: A case study. J. Oper. Oceanogr., 9 (Suppl.), s202s214, https://doi.org/10.1080/1755876X.2015.1114806.

    • Search Google Scholar
    • Export Citation
  • Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G. Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79, 20192031, https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, https://doi.org/10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tragou, E., and A. Lascaratos, 2003: Role of aerosols on the Mediterranean solar radiation. J. Geophys. Res., 108, 3025, https://doi.org/10.1029/2001JC001258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. A. Weller, and R. D. Cess, 1999: Comparison between buoy-observed, satellite-derived, and modeled surface shortwave flux over the tropical North Atlantic during the Subduction Experiment. J. Geophys. Res., 104, 31 30131 320, https://doi.org/10.1029/1999JD900946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, https://doi.org/10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., S. P. Bigorre, J. Lord, J. D. Ware, and J. B. Edson, 2012: A surface mooring for air–sea interaction research in the Gulf Stream. Part I: Mooring design and instrumentation. J. Atmos. Oceanic Technol., 29, 13631376, https://doi.org/10.1175/JTECH-D-12-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2014: Guide to meteorological instruments and methods of observation. WMO Rep. 8, 1128 pp.

  • Yamada, K., and T. Hayasaka, 2016: Evaluation of the accuracy of downward radiative flux observations at the sea surface. J. Oceanogr., 72, 553565, https://doi.org/10.1007/s10872-015-0345-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 143 13
PDF Downloads 149 103 14

Assessing the Quality of Shortwave and Longwave Irradiance Observations over the Ocean: One Year of High-Time-Resolution Measurements at the Lampedusa Oceanographic Observatory

View More View Less
  • 1 Laboratory for Observations and Analyses of Earth and Climate, National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
  • | 2 Laboratory for Observations and Analyses of Earth and Climate, National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Palermo, Italy
  • | 3 Laboratory for Observations and Analyses of Earth and Climate, National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Lampedusa, Italy
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Measurements of downwelling shortwave (SW) and longwave (LW) irradiance were carried out on an oceanographic buoy close to the island of Lampedusa (Italy), in the central Mediterranean Sea. Irradiance measurements on the buoy were acquired at high time resolution together with the radiometer pitch and roll angles. The measurements carried out during 2016 have been compared with ground-based observations made at the Lampedusa Atmospheric Observatory, about 15 km northeast of the buoy. The radiometers were compared before and after deployment on the buoy and are traceable to the World Radiometric Reference scale. The SW measurements were corrected for the thermal offset. A small bias (measurements over the sea are smaller than on land) of about −2 W m−2 is found in the daily mean SW, and a moderate bias of +6.2 W m−2 (irradiance over the sea is larger than on land) is found in the LW. Similar biases are found when instantaneous measurements obtained with horizontal radiometers, clean domes, and cloud-free conditions are selected, suggesting that impacts of the moving platform and poor dome cleaning are minor at this site. The effect of the mean tilt angle was also investigated. Deviations in the hourly mean SW irradiance are on the order of 20% for a mean offset of 4° with respect to the solar zenith angle; the effect of tilt angle on LW irradiance appears to be negligible. Radiative transfer calculations show that the observed biases may be ascribed to the differences in the instrument altitude (through radiation absorption, scattering, and emission by the atmospheric constituents in the lowest atmospheric layers) and in the SW surface albedo.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alcide di Sarra, alcide.disarra@enea.it

Abstract

Measurements of downwelling shortwave (SW) and longwave (LW) irradiance were carried out on an oceanographic buoy close to the island of Lampedusa (Italy), in the central Mediterranean Sea. Irradiance measurements on the buoy were acquired at high time resolution together with the radiometer pitch and roll angles. The measurements carried out during 2016 have been compared with ground-based observations made at the Lampedusa Atmospheric Observatory, about 15 km northeast of the buoy. The radiometers were compared before and after deployment on the buoy and are traceable to the World Radiometric Reference scale. The SW measurements were corrected for the thermal offset. A small bias (measurements over the sea are smaller than on land) of about −2 W m−2 is found in the daily mean SW, and a moderate bias of +6.2 W m−2 (irradiance over the sea is larger than on land) is found in the LW. Similar biases are found when instantaneous measurements obtained with horizontal radiometers, clean domes, and cloud-free conditions are selected, suggesting that impacts of the moving platform and poor dome cleaning are minor at this site. The effect of the mean tilt angle was also investigated. Deviations in the hourly mean SW irradiance are on the order of 20% for a mean offset of 4° with respect to the solar zenith angle; the effect of tilt angle on LW irradiance appears to be negligible. Radiative transfer calculations show that the observed biases may be ascribed to the differences in the instrument altitude (through radiation absorption, scattering, and emission by the atmospheric constituents in the lowest atmospheric layers) and in the SW surface albedo.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alcide di Sarra, alcide.disarra@enea.it
Save