• Allan, J. D., and Coauthors, 2004: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci., 35, 909922, https://doi.org/10.1016/j.jaerosci.2004.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol., 29, 5769, https://doi.org/10.1080/02786829808965551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and Coauthors, 1996: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol., 13, 967986, https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, and J. A. Ogren, 1999: Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest. J. Geophys. Res., 104, 26 79326 807, https://doi.org/10.1029/1999JD900172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ARM, 2016: Atmospheric Radiation Measurement (ARM) Climate Research Facility management plan. ARM Rep. DOE/SC-ARM-13-022, 27 pp.

  • Arnott, W. P., H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch, 1999: Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ., 33, 28452852, https://doi.org/10.1016/S1352-2310(98)00361-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, W. P., K. Hamasha, H. Moosmüller, P. J. Sheridan, and J. A. Ogren, 2005: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol., 39, 1729, https://doi.org/10.1080/027868290901972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biraud, S. C., and K. Reichl, 2016: Aerosol Observing System greenhouse gas (AOS GHG) handbook. ARM Tech. Rep. DOE/SC-ARM-TR-175, 36 pp., https://doi.org/10.2172/1246161.

    • Crossref
    • Export Citation
  • Bond, T. C., T. L. Anderson, and D. Campbell, 1999: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol., 30, 582600, https://doi.org/10.1080/027868299304435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullard, R. L., J. Uin, S. R. Springston, C. Kuang, and S. Smith, 2017: Aerosol Inlet Characterization Experiment report. ARM Tech. Rep. DOE/SC-ARM-TR-191, 19 pp., https://doi.org/10.2172/1355300.

    • Crossref
    • Export Citation
  • Cai, Y., D. C. Montague, W. Mooiweer-Bryan, and T. Deshler, 2008: Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies. J. Aerosol Sci., 39, 759769, https://doi.org/10.1016/j.jaerosci.2008.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrico, C. M., M. J. Rood, and J. A. Ogren, 1998: Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 103, 16 56516 574, https://doi.org/10.1029/98JD00685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, https://doi.org/10.1126/science.255.5043.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cress, T. S., D. L. Sisterson, T. S. Cress, and D. L. Sisterson, 2016: Deploying the ARM sites and supporting infrastructure. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0049.1.

    • Crossref
    • Export Citation
  • de Gouw, J., and C. Warneke, 2007: Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev., 26, 223257, https://doi.org/10.1002/mas.20119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drinovec, L., and Coauthors, 2015: The “dual-spot” aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech., 8, 19651979, https://doi.org/10.5194/amt-8-1965-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubey, M., S. Springston, A. Koontz, and A. Aiken, 2013: Photoacoustic Soot Spectrometer (PASS) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-123, 55 pp., https://doi.org/10.2172/1226795.

    • Crossref
    • Export Citation
  • Ferrare, R., G. Feingold, S. Ghan, J. Ogren, B. Schmid, S. E. Schwartz, and P. Sheridan, 2006: Preface to special section: Atmospheric Radiation Measurement Program May 2003 intensive operations period examining aerosol properties and radiative influences. J. Geophys. Res., 111, D05S01, https://doi.org/10.1029/2005JD006908.

    • Search Google Scholar
    • Export Citation
  • Flowers, B. A., M. K. Dubey, C. Mazzoleni, E. A. Stone, J. J. Schauer, S. W. Kim, and S. C. Yoon, 2010: Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis. Atmos. Chem. Phys., 10, 10 38710 398, https://doi.org/10.5194/acp-10-10387-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36, 191196, https://doi.org/10.1016/0048-9697(84)90265-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermann, M., B. Wehner, O. Bischof, H.-S. Han, T. Krinke, W. Liu, A. Zerrath, and A. Wiedensohler, 2007: Particle counting efficiencies of new TSI condensation particle counters. J. Aerosol Sci., 38, 674682, https://doi.org/10.1016/j.jaerosci.2007.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jayne, J. T., D. C. Leard, X. F. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, 2000: Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33, 4970, https://doi.org/10.1080/027868200410840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kebabian, P. L., W. A. Robinson, and A. Freedman, 2007: Optical extinction monitor using cw cavity enhanced detection. Rev. Sci. Instrum., 78, 063102, https://doi.org/10.1063/1.2744223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, E. O., and K. T. Whitby, 1975: Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci., 6, 443451, https://doi.org/10.1016/0021-8502(75)90060-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, C., 2016a: Condensation particle counter (CPC) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-145, 22 pp., https://doi.org/10.2172/1245983.

    • Crossref
    • Export Citation
  • Kuang, C., 2016b: TSI Model 3936 scanning mobility particle spectrometer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-147, 22 pp., https://doi.org/10.2172/1245993.

    • Crossref
    • Export Citation
  • Kyrouac, J., 2016: Aerosol Observing System Surface Meteorology instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-184, 15 pp., https://doi.org/10.2172/1251423.

    • Crossref
    • Export Citation
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, 2006: Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol., 40, 697708, https://doi.org/10.1080/02786820600803917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., A. Nenes, J. Medina, and J. N. Smith, 2006: Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci. Technol., 40, 242254, https://doi.org/10.1080/02786820500543290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leifer, R., R. H. Knuth, and H. N. Lee, 1994: Surface aerosol measurements at Lamont, Oklahoma. Proc. Third Atmospheric Radiation Measurement Science Team Meeting, Washington, DC, U.S. Department of Energy, 349–351.

  • Liu, B. Y., and D. Y. Pui, 1974: A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. J. Colloid Interface Sci., 47, 155171, https://doi.org/10.1016/0021-9797(74)90090-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P. S. K., and Coauthors, 2007: Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the Aerodyne aerosol mass spectrometer. Aerosol Sci. Technol., 41, 721733, https://doi.org/10.1080/02786820701422278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez-Yglesias, X. F., M. C. Yeung, S. E. Dey, F. J. Brechtel, and C. K. Chan, 2014: Performance Evaluation of the Brechtel Mfg. Humidified Tandem Differential Mobility Analyzer (BMI HTDMA) for studying hygroscopic properties of aerosol particles. Aerosol Sci. Technol., 48, 969980, https://doi.org/10.1080/02786826.2014.952366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massoli, P., P. L. Kebabian, T. B. Onasch, F. B. Hills, and A. Freedman, 2010: Aerosol light extinction measurements by cavity attenuated phase shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor. Aerosol Sci. Technol., 44, 428435, https://doi.org/10.1080/02786821003716599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComiskey, A., and R. A. Ferrare, 2016: Aerosol physical and optical properties and processes in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComiskey, A., and D. Sisterson, 2018: ARM Aerosol Measurement Science Group Strategic Planning Workshop 2017. ARM Tech. Rep. DOE/SC-ARM-TR-207, 49 pp.

    • Crossref
    • Export Citation
  • McCord, R., and J. Voyles, 2016: The ARM data system and archive. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM mobile facilities. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moteki, N., and Y. Kondo, 2008: Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam. J. Aerosol Sci., 39, 348364, https://doi.org/10.1016/j.jaerosci.2007.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2009: Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos. Chem. Phys., 9, 13651392, https://doi.org/10.5194/acp-9-1365-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, N. L., and Coauthors, 2011: An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci. Technol., 45, 780794, https://doi.org/10.1080/02786826.2011.560211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogren, J. A., 2010: Comment on “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols.” Aerosol Sci. Technol., 44, 589591, https://doi.org/10.1080/02786826.2010.482111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pekour, M. S., B. Schmid, D. Chand, J. M. Hubbe, C. D. Kluzek, D. A. Nelson, J. M. Tomlinson, and D. J. Cziczo, 2013: Development of a new airborne humidigraph system. Aerosol Sci. Technol., 47, 201207, https://doi.org/10.1080/02786826.2012.741274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256, 14321434, https://doi.org/10.1126/science.256.5062.1432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peppler, R., and Coauthors, 2008: Quality assurance of ARM Program Climate Research Facility data. ARM Tech. Rep. DOE/SC-ARM/TR-082, 71 pp., https://doi.org/10.2172/948030.

    • Crossref
    • Export Citation
  • Peppler, R., K. E. Kehoe, J. W. Monroe, A. K. Theisen, and S. T. Moore, 2016: The ARM Data Quality Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, T. M., and D. Leith, 2003: Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. J. Aerosol Sci., 34, 627634, https://doi.org/10.1016/S0021-8502(03)00030-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petzold, A., T. Onasch, P. Kebabian, and A. Freedman, 2013: Intercomparison of a cavity attenuated phase shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor. Atmos. Meas. Tech., 6, 11411151, https://doi.org/10.5194/amt-6-1141-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, D., G. P. Frank, U. Dusek, S. S. Gunthe, M. O. Andreae, and U. Pöschl, 2007: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys., 8, 11531179, https://doi.org/10.5194/acp-8-1153-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, H., A. D. A. Hansen, R. L. Dod, and T. Novakov, 1980: Soot in urban atmospheres: Determination by an optical absorption technique. Science, 208, 741744, https://doi.org/10.1126/science.208.4445.741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, B., R. G. Ellingson, G. M. McFarquhar, B. Schmid, R. G. Ellingson, and G. M. McFarquhar, 2016: ARM aircraft measurements. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111, D16207, https://doi.org/10.1029/2006JD007076.

    • Search Google Scholar
    • Export Citation
  • Sedlacek, A. J., 2016a: Aethalometer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-156, 36 pp., https://doi.org/10.2172/1251391.

    • Crossref
    • Export Citation
  • Sedlacek, A. J., 2016b: Cavity attenuated phase shift (CAPS) monitor instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-155, 23 pp., https://doi.org/10.2172/1251390.

    • Crossref
    • Export Citation
  • Sedlacek, A. J., 2017: Single-Particle Soot Photometer (SP2) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-169, 24 pp., https://doi.org/10.2172/1344179.

    • Crossref
    • Export Citation
  • Sedlacek, A. J., E. R. Lewis, L. Kleinman, J. Z. Xu, and Q. Zhang, 2012: Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2). Geophys. Res. Lett., 39, L06802, https://doi.org/10.1029/2012GL050905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlacek, A. J., E. R. Lewis, T. B. Onasch, A. T. Lambe, and P. Davidovits, 2015: Investigation of refractory black carbon-containing particle morphologies using the Single-Particle Soot Photometer (SP2). Aerosol Sci. Technol., 49, 872885, https://doi.org/10.1080/02786826.2015.1074978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20 73520 747, https://doi.org/10.1029/2001JD000785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lambe, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Geophys. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Springston, S. R., 2015: Carbon monoxide analyzer (CO-ANALYZER) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-159, 30 pp., https://doi.org/10.2172/1495422.

    • Crossref
    • Export Citation
  • Springston, S. R., 2016a: Radiance Research Particle Soot Absorption Photometer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-176, 28 pp., https://doi.org/10.2172/1246162.

    • Crossref
    • Export Citation
  • Springston, S. R., 2016b: Thermo Scientific ozone analyzer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-179, 28 pp., https://doi.org/10.2172/1246164.

    • Crossref
    • Export Citation
  • Springston, S. R., 2016c: Thermo Scientific sulfur dioxide analyzer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-180, 30 pp., https://doi.org/10.2172/1246165.

    • Crossref
    • Export Citation
  • Springston, S. R., and A. J. Sedlacek, 2007: Noise characteristics of an instrumental particle absorbance technique. Aerosol Sci. Technol., 41, 11101116, https://doi.org/10.1080/02786820701777457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, M., N. Turner, and J. Sandberg, 2003: Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt., 42, 37263736, https://doi.org/10.1364/AO.42.003726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011221, https://doi.org/10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M. R., and P. H. McMurry, 1991: An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol., 14, 4865, https://doi.org/10.1080/02786829108959470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tigges, L., A. Wiedensohler, K. Weinhold, J. Gandhi, and H. J. Schmid, 2015: Bipolar charge distribution of a soft X-ray diffusion charger. J. Aerosol Sci., 90, 7786, https://doi.org/10.1016/j.jaerosci.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and R. G. Ellingson, 2016: Introduction. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0001.1.

    • Crossref
    • Export Citation
  • Uin, J., 2016a: Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-163, 17 pp., https://doi.org/10.2172/1251410.

    • Crossref
    • Export Citation
  • Uin, J., 2016b: Integrating nephelometer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-165, 16 pp., https://doi.org/10.2172/1246075.

    • Crossref
    • Export Citation
  • Uin, J., 2016c: Cloud condensation nuclei particle counter (CCN) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-168, 16 pp., https://doi.org/10.2172/1251411.

    • Crossref
    • Export Citation
  • Uin, J., 2016d: Humidified Tandem Differential Mobility Analyzer instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-161, 17 pp., https://doi.org/10.2172/1251403.

    • Crossref
    • Export Citation
  • Virkkula, A., 2010: Correction of the calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP). Aerosol Sci. Technol., 44, 706712, https://doi.org/10.1080/02786826.2010.482110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virkkula, A., N. C. Ahlquist, D. S. Covert, W. P. Arnott, P. J. Sheridan, P. K. Quinn, and D. J. Coffman, 2005: Modification, calibration and a field test of an instrument for measuring light absorption by particles. Aerosol Sci. Technol., 39, 6883, https://doi.org/10.1080/027868290901963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. C., and R. C. Flagan, 1990: Scanning electrical mobility spectrometer. Aerosol Sci. Technol., 13, 230240, https://doi.org/10.1080/02786829008959441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, T. B., 2016a: Particle-into-Liquid Sampler (PILS) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-162, 20 pp., https://doi.org/10.2172/1251405.

    • Crossref
    • Export Citation
  • Watson, T. B., 2016b: Proton transfer time-of-flight mass spectrometer. U ARM Tech. Rep. DOE/SC-ARM-TR-160, 32 pp., https://doi.org/10.2172/1251396.

    • Crossref
    • Export Citation
  • Watson, T. B., 2017: Aerosol chemical speciation monitor (ACSM) instrument handbook. ARM Tech. Rep. DOE/SC-ARM-TR-196, 21 pp., https://doi.org/10.2172/1375336.

    • Crossref
    • Export Citation
  • Zhang, X., K. A. Smith, D. R. Worsnop, J. Jimenez, J. T. Jayne, and C. E. Kolb, 2002: A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system: Part I. An individual lens or nozzle. Aerosol Sci. Technol., 36, 617631, https://doi.org/10.1080/02786820252883856.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 969 636 45
PDF Downloads 696 470 44

Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for Surface-Based In Situ Atmospheric Aerosol and Trace Gas Measurements

View More View Less
  • 1 Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
  • | 2 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 3 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 4 Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Aerosols alter Earth’s radiative budget both directly and indirectly through interaction with clouds. Continuous observations are required to reduce the uncertainties in climate models associated with atmospheric processing and the interactions between aerosols and clouds. Field observations of aerosols are a central component of the Atmospheric Radiation Measurement (ARM) Facility’s global measurements. The ARM mission goal is to “provide the climate research community with strategically located in situ and remote sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.” Since 1996, ARM has met this goal by operating Aerosol Observing Systems (AOS) for in situ measurement of aerosols. Currently the five ARM AOSs are the most comprehensive field deployable aerosol systems in the United States. The AOS suite includes seven measurement classes: number concentration, size distribution, chemical composition, radiative and optical properties, hygroscopicity, trace gases, and supporting meteorological conditions. AOSs are designed as standardized measurement platforms to enable intercomparison across the ARM Facility for regional process studies within a global context. The instrumentation and measurement capabilities of the ARM AOSs, along with a history of their design and field deployments are presented here.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Janek Uin, juin@bnl.gov

Abstract

Aerosols alter Earth’s radiative budget both directly and indirectly through interaction with clouds. Continuous observations are required to reduce the uncertainties in climate models associated with atmospheric processing and the interactions between aerosols and clouds. Field observations of aerosols are a central component of the Atmospheric Radiation Measurement (ARM) Facility’s global measurements. The ARM mission goal is to “provide the climate research community with strategically located in situ and remote sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.” Since 1996, ARM has met this goal by operating Aerosol Observing Systems (AOS) for in situ measurement of aerosols. Currently the five ARM AOSs are the most comprehensive field deployable aerosol systems in the United States. The AOS suite includes seven measurement classes: number concentration, size distribution, chemical composition, radiative and optical properties, hygroscopicity, trace gases, and supporting meteorological conditions. AOSs are designed as standardized measurement platforms to enable intercomparison across the ARM Facility for regional process studies within a global context. The instrumentation and measurement capabilities of the ARM AOSs, along with a history of their design and field deployments are presented here.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Janek Uin, juin@bnl.gov
Save