• Bachmann, S., and D. Zrnić, 2007: Spectral density of polarimetric variables separating biological scatterers in the VAD display. J. Atmos. Oceanic Technol., 24, 11861198, https://doi.org/10.1175/JTECH2043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., A. Shapiro, P. Zhang, and Q. Xu, 2002: Quality control problems for VAD winds and NEXRAD level-II winds in the presence of migrating birds. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 143145.

    • Search Google Scholar
    • Export Citation
  • Buler, J. J., and R. H. Diehl, 2009: Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans. Geosci. Remote Sens., 47, 27412751, https://doi.org/10.1109/TGRS.2009.2014463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buler, J. J., and D. K. Dawson, 2014: Radar analysis of fall bird migration stopover sites in the northeastern US. Condor, 116, 357370, https://doi.org/10.1650/CONDOR-13-162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buler, J. J., L. A. Randall, J. P. Fleskes, W. C. Barrow Jr., T. Bogart, and D. Kluver, 2012: Mapping wintering waterfowl distributions using weather surveillance radar. PLOS ONE, 7, e41571, https://doi.org/10.1371/journal.pone.0041571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, Y. H., G. Lee, K. E. Kim, and I. Zawadzki, 2006: Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J. Atmos. Oceanic Technol., 23, 12061222, https://doi.org/10.1175/JTECH1913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. G., 2001: The quality control of velocity azimuth display (VAD) winds at the National Centers for Environmental Prediction. Preprints, 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., 317320.

    • Search Google Scholar
    • Export Citation
  • Dokter, A. M., F. Liechti, H. Stark, L. Delobbe, P. Tabary, and I. Holleman, 2011: Bird migration flight altitudes studied by network of operational weather radars. J. Roy. Soc. Interface, 8, 3043, https://doi.org/10.1098/rsif.2010.0116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2015: Radar Meteorology—Principles and Practice. Cambridge University Press, 256 pp.

  • Farnsworth, A., B. M. Van Doren, W. M. Hochachka, D. Sheldon, K. Winner, J. Irvine, J. Geevarghese, and S. Kelling, 2015: A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern US. Ecol. Appl., 26, 752770, https://doi.org/10.1890/15-0023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthreaux, S. A., Jr., and C. G. Belser, 1998: Displays of bird movements on the WSR-88D: Patterns and quantification. Wea. Forecasting, 13, 453464, https://doi.org/10.1175/1520-0434(1998)013<0453:DOBMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthreaux, S. A., Jr., D. S. Mizarhi, and C. G. Belser, 1998: Bird migration and bias of WSR-88D wind estimates. Wea. Forecasting, 13, 465481, https://doi.org/10.1175/1520-0434(1998)013<0465:BMABOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthreaux, S. A., Jr., C. G. Belser, and D. Van Blaricom, 2003: Using a network of WSR-88D weather surveillance radars to define patterns of bird migration at large spatial scales. Avian Migration, Springer-Verlag, 335346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. Parent du Chatelet, 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 14391451, https://doi.org/10.1175/JTECH2035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holleman, I., H. van Gasteren, and W. Bouten, 2008: Quality assessment of weather radar wind profiles during bird migration. J. Atmos. Oceanic Technol., 25, 21882198, https://doi.org/10.1175/2008JTECHA1067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungbluth, K., J. Belles, and M. Schumacher, 1995: Velocity contamination of WSR-88D and wind profiler data due to migrating birds. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 666668.

    • Search Google Scholar
    • Export Citation
  • Kilambi, A., F. Fabry, and V. Meunier, 2018: A Simple and effective method for separating meteorological from nonmeteorological targets using dual-polarization data. J. Atmos. Oceanic Technol., 35, 14151424, https://doi.org/10.1175/JTECH-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koistinen, J., 2000: Bird migration patterns on weather radar. Phys. Chem. Earth, 25B, 11851194, https://doi.org/10.1016/S1464-1909(00)00176-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., Q. Xu, and P. Zhang, 2005: Identifying Doppler velocity contamination caused by migrating birds. Part II: Bayes identification and probability tests. J. Atmos. Oceanic Technol., 22, 11141121, https://doi.org/10.1175/JTECH1758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, https://doi.org/10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and S. Matrosov, 2013: Radar measurements of the axis ratios of cloud particles. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228291/AxisRatio.pdf.

  • Melnikov, V., R. R. Lee, and N. J. Langlieb, 2012: Resonance effects within S-band in echoes from birds. IEEE Geosci. Remote Sens. Lett., 9, 413416, https://doi.org/10.1109/LGRS.2011.2169933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nebuloni, R., C. Capsoni, and V. Vigorita, 2008: Quantifying bird migration by a high-resolution weather radar. IEEE Trans. Geosci. Remote Sens., 46, 18671875, https://doi.org/10.1109/TGRS.2008.916467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Bannon, T., 1995: Anomalous WSR-88D wind profiles—Migrating bird? Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 663664.

  • Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686, https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stepanian, P. M., K. G. Horton, V. M. Melnikov, D. S. Zrnić, and S. A. Gauthreaux Jr., 2016: Dual-polarization radar products for biological applications. Ecosphere, 7, e01539, https://doi.org/10.1002/ecs2.1539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torvik, B., K. E. Olsen, and H. Griffiths, 2016: Classification of birds and UAVs based on radar polarimetry. IEEE Geosci. Remote Sens. Lett., 13, 13051309, https://doi.org/10.1109/LGRS.2016.2582538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Gasteren, H., I. Holleman, W. Bouten, E. van Loon, and J. Shamoun-Baranes, 2008: Extracting bird migration information from C-band weather radar. Ibis, 150, 674686, https://doi.org/10.1111/j.1474-919X.2008.00832.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., A. Bellon, C. Cote, and F. Fabry, 2001: Target identification by dual-polarization radar in operational environment. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 165167.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., A. V. Ryzhkov, and D. S. Zrnić, 2004: Detection of birds and insects using polarimetric radar observation. 11th Conf. on Aviation, Range, and Aerospace Meteorology, 5, Hyannis, MA, Amer. Meteor. Soc., P5.13, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81616.htm.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1998: Observations of insects and birds with polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36, 661668, https://doi.org/10.1109/36.662746.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 216 21
PDF Downloads 381 247 25

Fuzzy Logic Algorithms to Identify Birds, Precipitation, and Ground Clutter in S-Band Radar Data Using Polarimetric and Nonpolarimetric Variables

View More View Less
  • 1 National Atmospheric Research Laboratory, Department of Space, Gadanki, India
  • | 2 J. S. Marshall Radar Observatory, Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The statistical properties of the radar echoes from biological, precipitation, and ground targets observed with the McGill S-band dual-polarization radar have been used to devise a polarimetric and a nonpolarimetric fuzzy logic algorithm for pixel-by-pixel target identification. Radar observations of migrating birds show distinctly different polarimetric features during their relative approach and departure from the radar site illustrating the dependency of radar parameters on the canting angle and scattering cross section. The devised algorithms have been tested with two independent events, each consisting of 2 h of radar observations with a 5-min temporal resolution. One event consisted of precipitation without birds while the other contained only birds. The misclassifications were 10.12% and 9.6%, respectively, for the two cases for the nonpolarimetric algorithm, and 1.99% and 0.92% for the polarimetric algorithm. The results indicate that even though nonpolarimetric radar membership functions may be considered adequate for separating radar echo returns from birds, precipitation, and ground targets, they are not sufficiently skilled if a greater accuracy is required. Target identification without polarimetric variables especially fails in the region of zero isodop and in precipitation with an echo top below 4 km.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. B. Radhakrishna, rakibasivi@gmail.com

Abstract

The statistical properties of the radar echoes from biological, precipitation, and ground targets observed with the McGill S-band dual-polarization radar have been used to devise a polarimetric and a nonpolarimetric fuzzy logic algorithm for pixel-by-pixel target identification. Radar observations of migrating birds show distinctly different polarimetric features during their relative approach and departure from the radar site illustrating the dependency of radar parameters on the canting angle and scattering cross section. The devised algorithms have been tested with two independent events, each consisting of 2 h of radar observations with a 5-min temporal resolution. One event consisted of precipitation without birds while the other contained only birds. The misclassifications were 10.12% and 9.6%, respectively, for the two cases for the nonpolarimetric algorithm, and 1.99% and 0.92% for the polarimetric algorithm. The results indicate that even though nonpolarimetric radar membership functions may be considered adequate for separating radar echo returns from birds, precipitation, and ground targets, they are not sufficiently skilled if a greater accuracy is required. Target identification without polarimetric variables especially fails in the region of zero isodop and in precipitation with an echo top below 4 km.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. B. Radhakrishna, rakibasivi@gmail.com
Save