• Alexander, M. A., J. D. Scott, K. D. Friedland, K. E. Mills, J. A. Nye, A. J. Pershing, and A. C. Thomas, 2018: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elementa, 6, 9, http://doi.org/10.1525/elementa.191.

    • Search Google Scholar
    • Export Citation
  • Alvarez-Ramirez, J., J. Alvarez, L. Dagdug, E. Rodriguez, and J. C. Echeverria, 2008: Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Physica A, 387, 36293640, https://doi.org/10.1016/j.physa.2008.02.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderegg, W. R. L., J. W. Prall, J. Harold, and S. H. Schneider, 2010: Expert credibility in climate change. Proc. Natl. Acad. Sci. USA, 107, 12 10712 109, https://doi.org/10.1073/pnas.1003187107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, J. J., and J. A. Miron, 1993: Seasonal unit roots in aggregate U.S. data. J. Econom., 55, 305328, https://doi.org/10.1016/0304-4076(93)90018-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckage, B., and Coauthors, 2018: Linking models of human behaviour and climate alters projected climate change. Nat. Climate Change, 8, 7984, https://doi.org/10.1038/s41558-017-0031-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1973: An exponential model in the spectrum of a scalar time series. Biometrika, 60, 217226, https://doi.org/10.1093/biomet/60.2.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1992: Trends in global temperatures. Climatic Change, 21, 116, https://doi.org/10.1007/BF00143250.

  • Breaker, L. C., 2019: Long-range persistence in sea surface temperature off the coast of central California. J. Ocean Climate, 9, https://doi.org/10.1177/1759313118791113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., 2017: Long-term memory in climate: Detection, extreme events and significance of trends. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. O’Kane, Eds., Cambridge University Press, 318–339, https://doi.org/10.1017/9781316339251.012.

    • Crossref
    • Export Citation
  • Bunde, A., J. Ludescher, C. L. E. Franzke, and U. Büntgen, 2014: How significant is West Antarctic warming? Nat. Geosci., 7, 246247, https://doi.org/10.1038/ngeo2126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chollett, I., F. E. Müller-Karger, S. F. Heron, W. Skirving, and P. J. Mumby, 2012: Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Mar. Pollut. Bull., 64, 956965, https://doi.org/10.1016/j.marpolbul.2012.02.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuestas, J. C., and L. A. Gil-Alana, 2016: A non-linear approach with long range dependence based on Chebyshev polynomials. Stud. Nonlinear Dyn. Econom., 20, 5794, https://doi.org/10.1515/snde-2014-0005.

    • Search Google Scholar
    • Export Citation
  • Dahlhaus, R., 1989: Efficient parameter estimation for self-similar processes. Ann. Stat., 17, 17491766, https://doi.org/10.1214/aos/1176347393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Q., D. Nian, and Z. Fu, 2018: The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records. Climate Dyn., 50, 10911100, https://doi.org/10.1007/s00382-017-3662-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, https://doi.org/10.1029/2010GL043321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, D. A., D. P. Hasza, and W. A. Fuller, 1984: Testing for unit roots in seasonal time series. J. Amer. Stat. Assoc., 79, 355367, https://doi.org/10.1080/01621459.1984.10478057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichner, J. F., E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. J. Schellnhuber, 2003: Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev., 68E, 046133, https://doi.org/10.1103/PhysRevE.68.046133.

    • Search Google Scholar
    • Export Citation
  • Fatichi, S., S. M. Barbosa, E. Caporali, and M. E. Silva, 2009: Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res., 114, D18121, https://doi.org/10.1029/2009JD011960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland C. K., O. Boucher, A. Colman and D. E. Parker, 2018: Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv., 4, eaao5297, https://doi.org/10.1126/sciadv.aao5297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, 23, 60746081, https://doi.org/10.1175/2010JCLI3654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2012a: On the statistical significance of surface air temperature trends in the Eurasian Arctic region. Geophys. Res. Lett., 39, L23705, https://doi.org/10.1029/2012GL054244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2012b: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Climate, 25, 41724183, https://doi.org/10.1175/JCLI-D-11-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2013: A novel method to test for significant trends in extreme values in serially dependent time series. Geophys. Res. Lett., 40, 13911395, https://doi.org/10.1002/grl.50301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedland, K. D., and J. A. Hare, 2007: Long-term trends and regime shifts in sea surface temperature on the continental shelf of the northeast United States. Cont. Shelf Res., 27, 23132328, https://doi.org/10.1016/j.csr.2007.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., and R. Vautard, 1991: Interdecadal oscillations and the warming trend in global temperature time series. Nature, 350, 324327, https://doi.org/10.1038/350324a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2003: Estimation of the degree of dependence in the temperatures in the Northern Hemisphere using semi-parametric techniques. J. Appl. Stat., 30, 10211031, https://doi.org/10.1080/0266476032000076146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2005: Statistical model for the temperatures in the Northern Hemisphere using fractional integration techniques. J. Climate, 18, 53575369, https://doi.org/10.1175/JCLI3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2008a: Time trend estimation with breaks in temperature time series. Climatic Change, 89, 325337, https://doi.org/10.1007/s10584-008-9407-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2008b: Warming break trends and fractional integration in the northern, southern, and global temperature anomaly series. J. Atmos. Oceanic Technol., 25, 570578, https://doi.org/10.1175/2007JTECHA1025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2015: Linear and segmented trends in sea surface temperature data. J. Appl. Stat., 42, 15311546, https://doi.org/10.1080/02664763.2014.1001328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2018: Maximum and minimum temperatures in the United States: Time trends and persistence. Atmos. Sci. Lett., 19, e810, https://doi.org/10.1002/asl.810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., and P. M. Robinson, 2001: Testing seasonal fractional integration in the UK and Japanese consumption and income. J. Appl. Econ., 16, 95114, https://doi.org/10.1002/jae.597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., and L. Sauci, 2019: US temperatures: Time trends and persistence. Int. J. Climatol., 39, 50915103, https://doi.org/10.1002/joc.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., O. Yaya, and A. F. Fagbamigbe, 2019: Time series analysis of quarterly rainfall and temperature (1900–2012) in sub-Saharan African countries. Theor. Appl. Climatol., 137, 6176, https://doi.org/10.1007/s00704-018-2583-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goela, P. C., C. Cordeiro, S. Danchenko, J. Icely, S. Cristina, and A. Newton, 2016: Time series analysis of data for sea surface temperature and upwelling components from the southwest coast of Portugal. J. Mar. Syst., 163, 1222, https://doi.org/10.1016/j.jmarsys.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1980: Long memory relationships and the aggregation of dynamic models. J. Econom., 14, 227238, https://doi.org/10.1016/0304-4076(80)90092-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1981: Some properties of time series data and their use in econometric model specification. J. Econom., 16, 121130, https://doi.org/10.1016/0304-4076(81)90079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., and R. Joyeux, 1980: An introduction to long memory time series models and fractional differencing. J. Time Ser. Anal., 1, 1539, https://doi.org/10.1111/j.1467-9892.1980.tb00297.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, J. D., 1994: Time Series Analysis. Princeton University Press, 820 pp.

  • Hansen, J., and S. Lebedeff, 1988: Global surface air temperatures: Update through 1987. Geophys. Res. Lett., 15, 323326, https://doi.org/10.1029/GL015i004p00323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hasselmann, K., 1993: Optimal fingerprints for the detection of time-dependent climate change. J. Climate, 6, 19571971, https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones, 1996: Detecting greenhouse gas–induced climate change with an optimal fingerprint method. J. Climate, 9, 22812306, https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., K. Hasselmann, U. Cubasch, J. F. B. Mitchell, E. Roeckner, R. Voss, and J. Waskewitz, 1997: On multi-fingerprint detection and attribution of greenhouse gas and aerosol forced climatic change. Climate Dyn., 13, 613634, https://doi.org/10.1007/s003820050186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1981: Fractional differencing. Biometrika, 68, 165176, https://doi.org/10.1093/biomet/68.1.165.

  • Hylleberg, S., 1986: Seasonality in Regression. Academic Press, 296 pp.

  • Hylleberg, S., Ed., 1992: Modelling Seasonality. Oxford University Press, 476 pp.

  • Hylleberg, S., R. F. Engle, C. W. J. Granger, and B. S. Yoo, 1990: Seasonal integration and cointegration. J. Econom., 44, 215238, https://doi.org/10.1016/0304-4076(90)90080-D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1995: Climate Change 1995: The Science of Climate Change. J. T. Houghton et al., Eds., Cambridge University Press, 572 pp.

  • Jones, P. D., and G. C. Hegerl, 1998: Comparisons of two methods of removing anthropogenically related variability from the near surface observational temperature field. J. Geophys. Res., 103, 13 77713 786, https://doi.org/10.1029/98JD01144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16, 206223, https://doi.org/10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and T. M. L. Wigley, 2010: Estimation of global temperature trends: What’s important and what isn’t. Climatic Change, 100, 5969, https://doi.org/10.1007/s10584-010-9836-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. M. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., and D. I. Stern, 2002: Cointegration analysis of hemispheric temperature relations. J. Geophys. Res., 107, 4012, https://doi.org/10.1029/2000JD000174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., R. Knutti, P. Uhe, D. M. Mitchell, S. C. Lewis, J. M. Arblaster, and N. Freychet, 2018: On the linearity of local and regional temperature changes from 1.5°C to 2°C of global warming. J. Climate, 31, 74957514, https://doi.org/10.1175/JCLI-D-17-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koscielny-Bunde, E., A. Bunde, S. Havlin, H. E. Roman, Y. Goldreich, and H.-J. Schellnhuber, 1998: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett., 81, 729732, https://doi.org/10.1103/PhysRevLett.81.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennartz, S., and A. Bunde, 2009: Trend evaluation in records with long-term memory: Application to global warming. Geophys. Res. Lett., 36, L16706, https://doi.org/10.1029/2009GL039516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López García, M. J., and A. M. C. Belmonte, 2011: Recent trends of SST in the western Mediterranean basins from AVHRR Pathfinder data (1985–2007). Global Planet. Change, 78, 127136, https://doi.org/10.1016/j.gloplacha.2011.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludescher, J., A. Bunde, C. L. Franzke, and H. J. Schellnhuber, 2016: Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Climate Dyn., 46, 263271, https://doi.org/10.1007/s00382-015-2582-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massah, M., and H. Kantz, 2016: Confidence intervals for time averages in the presence of long-range correlations, a case study on Earth surface temperature anomalies. Geophys. Res. Lett., 43, 92439249, https://doi.org/10.1002/2016GL069555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, T. C., 2004: Time series modelling of trends in Northern Hemispheric average temperature series. Energy Environ., 15, 743753, https://doi.org/10.1260/0958305042886741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, T. C., 2006: Modelling current trends in Northern Hemisphere temperatures. Int. J. Climatol., 26, 867884, https://doi.org/10.1002/joc.1286.

  • Mills, T. C., 2007: Time series modelling of two millennia of Northern Hemisphere temperatures: Long memory or shifting trends? J. Roy. Stat. Soc., 170A, 8394, https://doi.org/10.1111/j.1467-985X.2006.00443.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., and A. Maeda, 2005: A 1 degree SST dataset compiled from ICOADS from 1850 to 2002 and Northern Hemisphere frontal variability. Int. J. Climatol., 25, 881894, https://doi.org/10.1002/joc.1170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlén, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613617, https://doi.org/10.1038/nature03265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monetti, R. A., S. Havlin, and A. Bunde, 2003: Long-term persistence in the sea surface temperature fluctuations. Physica A, 320, 581589, https://doi.org/10.1016/S0378-4371(02)01662-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2019: Trend analysis of climate time series: A review of methods. Earth Sci. Rev., 190, 310322, https://doi.org/10.1016/j.earscirev.2018.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., G. V. Gruza, J. Jouzel, T. R. Kart, L. A. Ogallo, and D. E. Parker, 1996: Observed climate variability and change. Climate Change 1995: The Science of Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 133–192.

  • North, G. R., and K.-Y. Kim, 1995: Detection of forced climate signals. Part II: Simulation results. J. Climate, 8, 409417, https://doi.org/10.1175/1520-0442(1995)008<0409:DOFCSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., K.-Y. Kim, S. S. P. Shen, and J. W. Hardin, 1995: Detection of forced climate signals. Part I: Filter theory. J. Climate, 8, 401408, https://doi.org/10.1175/1520-0442(1995)008<0401:DOFCSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., A. AghaKouchak, K. E. Trenberth, and E. Foufoula-Georgiou, 2018: Global, regional, and megacity trends in the highest temperature of the year: Diagnostics and evidence for accelerating trends. Earth’s Future, 6, 7179, https://doi.org/10.1002/2017EF000709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastor, F., J. A. Valiente, and J. L. Palau, 2019: Sea surface temperature in the Mediterranean: Trends and spatial patterns (1982–2016). Meteorology and Climatology of the Mediterranean and Black Seas, Springer, 297–309.

    • Crossref
    • Export Citation
  • Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short- and long-memory process. J. Climate, 14, 45454559, https://doi.org/10.1175/1520-0442(2001)014<4545:IONPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poppick, A., E. J. Moyer, and M. L. Stein, 2017: Estimating trends in the global mean temperature record. Adv. Stat. Climatol. Meteor. Oceanogr., 3, 3353, https://doi.org/10.5194/ascmo-3-33-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajaratnam, B., J. Romano, M. Tsiang, and N. S. Diffenbaugh, 2015: Debunking the climate hiatus. Climatic Change, 133, 129140, https://doi.org/10.1007/s10584-015-1495-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 data set. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2009: Evaluating climate variability and change from modern and historical SST observations. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, European Space Agency, 819–829.

  • Robinson, P. M., 1994: Efficient tests of nonstationary hypotheses. J. Amer. Stat. Assoc., 89, 14201437, https://doi.org/10.1080/01621459.1994.10476881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch, 2006: Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33, L06718, https://doi.org/10.1029/2005GL025591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rybski, D., A. Bunde, and H. von Storch, 2008: Long-term memory in 1000-year simulated temperature records. J. Geophys. Res., 113, D02106, https://doi.org/10.1029/2007JD008568.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., K. E. Taylor, T. M. L. Wigley, J. E. Penner, P. D. Jones, and U. Cubasch, 1995: Towards the detection and attribution of an anthropogenic effect on climate. Climate Dyn., 12, 77100, https://doi.org/10.1007/BF00223722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaltout, M., and A. Omstedt, 2014: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56, 411443, https://doi.org/10.5697/oc.56-3.411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832293, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D., and R. K. Kaufmann, 2000: Is there a global warming signal in hemispheric temperature series? Climatic Change, 47, 411438, https://doi.org/10.1023/A:1005672231474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramska, M., and J. Białogrodzka, 2015: Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982–2013) of satellite data. Oceanologia, 57, 223235, https://doi.org/10.1016/j.oceano.2015.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., and Coauthors, 2017: Seasonal trends and phenology shifts in sea surface temperature on the North American northeast shelf. Elementa, 5, 48, https://doi.org/10.1525/elementa.240.

    • Search Google Scholar
    • Export Citation
  • Turkington, T., B. Timbal, and R. Rahmat, 2019: The impact of global warming on sea surface temperature based El Niño–Southern Oscillation monitoring indices. Int. J. Climatol., 39, 10921103, https://doi.org/10.1002/joc.5864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaya, O. S., and O. J. Akintande, 2018: Long-range dependence, nonlinear trend, and breaks in historical sea surface and land air surface global and regional temperature anomalies. Theor. Appl. Climatol., 137, 177185, https://doi.org/10.1007/s00704-018-2592-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, N., M. Ding, Y. Huang, Z. Fu, E. Xoplaki, and J. Luterbacher, 2015: On the long-term climate memory in the surface air temperature records over Antarctica: A non-negligible factor for trend evaluation. J. Climate, 28, 59225934, https://doi.org/10.1175/JCLI-D-14-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 195 15
PDF Downloads 263 182 15

Sea Surface Temperatures: Seasonal Persistence and Trends

View More View Less
  • 1 Faculty of Economics, and Institute for Culture and Society, University of Navarra, Pamplona, Spain
  • | 2 Universidad Francisco de Vitoria, Madrid, Spain
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper addresses analysis of the global monthly sea surface temperatures using a reconstructed dataset that goes back to 1884. We use fractional integration methods to examine features such as persistence, seasonality, and time trends in the data. The results show that seasonality is a relevant issue, finding evidence of seasonal unit roots. With the seasonal component removed, persistence is also very significant, and, when looking at the data month by month, evidence of significant linear trends is detected in all cases. According to these results, monthly sea surface temperatures increase by between 0.07° and 0.11°C every 100 years.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Universidad Francisco de Vitoria, Madrid, Spain.

Corresponding author: Luis A. Gil-Alana, alana@unav.es

Abstract

This paper addresses analysis of the global monthly sea surface temperatures using a reconstructed dataset that goes back to 1884. We use fractional integration methods to examine features such as persistence, seasonality, and time trends in the data. The results show that seasonality is a relevant issue, finding evidence of seasonal unit roots. With the seasonal component removed, persistence is also very significant, and, when looking at the data month by month, evidence of significant linear trends is detected in all cases. According to these results, monthly sea surface temperatures increase by between 0.07° and 0.11°C every 100 years.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Universidad Francisco de Vitoria, Madrid, Spain.

Corresponding author: Luis A. Gil-Alana, alana@unav.es
Save