• Anonymous, 1960: Notes and personalia. Eos, Trans. Amer. Geophys. Union, 41, 670, https://doi.org/10.1029/TR041i004p00670.

  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • ATOC Consortium, 1998: Ocean climate change: Comparison of acoustic tomography, satellite altimetry, and modeling. Science, 281, 13271332, https://doi.org/10.1126/science.281.5381.1327.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BOM, 2001: Oceanobs’99 conference statement. Observing the Oceans in the 21st Century: A Strategy for Global Ocean Observations, C. J. Koblinsky and N. R. Smith, Eds., Bureau of Meteorology, 30 pp., http://www.oceanobs09.net/work/oo99/docs/Statement.pdf.

  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to mode-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, C.-S., A. J. Semtner, C. M. Ort, J. H. Miller, and L. L. Ehret, 1994: A ray variability analysis of sound transmission from Heard Island to California. J. Acoust. Soc. Amer., 96, 2380, https://doi.org/10.1121/1.410110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornuelle, B. D., and P. F. Worcester, 1996: Ocean acoustic tomography: Integral data and ocean models. Modern Approaches to Data Assimilation in Ocean Modeling, P. Malanotte-Rizzoli, Ed., Elsevier Science, 97–115, https://doi.org/10.1016/S0422-9894(96)80007-9.

    • Crossref
    • Export Citation
  • Cornuelle, B. D., W. Munk, and P. F. Worcester, 1989: Ocean acoustic tomography from ships. J. Geophys. Res., 94, 62325250, https://doi.org/10.1029/JC094iC05p06232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornuelle, B. D., and Coauthors, 1993: Ocean acoustic tomography at 1000-km range using wavefronts measured with a large-aperture vertical array. J. Geophys. Res., 98, 16 36516 377, https://doi.org/10.1029/93JC01246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Grosso, V. A., 1974: New equation for speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Amer., 56, 10841091, https://doi.org/10.1121/1.1903388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., R. A. Pawlowicz, J. F. Lynch, and B. D. Cornuelle, 1995: Simulated tomographic reconstruction of ocean features using drifting acoustic receivers and a navigated source. J. Acoust. Soc. Amer., 98, 22702279, https://doi.org/10.1121/1.413341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 1999: Inversion of multimegameter range acoustic data for ocean temperature. IEEE J. Oceanic Eng., 24, 215223, https://doi.org/10.1109/48.757272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2014: Ocean acoustic tomography. Encyclopedia of Remote Sensing, E. G. Njoku, Ed., Encyclopedia of Earth Sciences Series, Springer-Verlag, 411, https://doi.org/10.1007/978-0-387-36699-9_211.

    • Crossref
    • Export Citation
  • Dushaw, B. D., 2014: Assessing the horizontal refraction of ocean acoustic tomography signals using high-resolution ocean state estimates. J. Acoust. Soc. Amer., 136, 122129, https://doi.org/10.1121/1.4881928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry: Computing accurate tidal predictions at arbitrary points over the world oceans. Tech. Memo. APL-UW 1-15, Applied Physics Laboratory, University of Washington, 107 pp., http://www.apl.washington.edu/project/project.php?id=tm\_1-15.

  • Dushaw, B. D., and D. Menemenlis, 2014: Antipodal acoustic thermometry: 1960, 2004. Deep-Sea Res. I, 86, 120, https://doi.org/10.1016/j.dsr.2013.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., and H. Sagen, 2016: A comparative study of the properties of moored/point and acoustic tomography/integral observations of Fram Strait using objective mapping techniques. J. Atmos. Oceanic Technol., 33, 20792093, https://doi.org/10.1175/JTECH-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, B. D. Cornuelle, and B. M. Howe, 1993: Variability of heat content in the central North Pacific in summer 1987 determined from long-range acoustic transmissions. J. Phys. Oceanogr., 23, 26502666, https://doi.org/10.1175/1520-0485(1993)023<2650:VOHCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., B. M. Howe, B. D. Cornuelle, P. F. Worcester, and D. S. Luther, 1995: Baroclinic and barotropic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631647, https://doi.org/10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., G. D. Egbert, P. F. Worcester, B. D. Cornuelle, B. M. Howe, and K. Metzger, 1997: A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Prog. Oceanogr., 40, 337367, https://doi.org/10.1016/S0079-6611(98)00008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., and Coauthors, 2001: Observing the ocean in the 2000s: A strategy for the role of acoustic tomography in ocean climate observation. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., GODAE Project Office and Bureau of Meteorology, 391–418, http://staff.washington.edu/dushaw/epubs/OceanObs99Paper.pdf.

  • Dushaw, B. D., and Coauthors, 2009: A decade of acoustic thermometry in the North Pacific Ocean. J. Geophys. Res., 114, C07021, https://doi.org/10.1029/2008JC005124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., and Coauthors, 2010: A global ocean acoustic observing network. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, https://doi.org/10.5270/OceanObs09.cwp.25, http://www.oceanobs09.net/proceedings/cwp/Dushaw-OceanObs09.cwp.25.pdf.

    • Crossref
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, and M. A. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677698, https://doi.org/10.1016/j.dsr.2011.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, M. A. Dzieciuch, and D. Menemenlis, 2013: On the time-mean state of ocean models and the properties of long-range acoustic propagation. J. Geophys. Res. Oceans, 118, 43464362, https://doi.org/10.1002/jgrc.20325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., H. Sagen, and A. Beszczynska-Möller, 2016a: On the effects of small-scale variability on acoustic propagation in Fram Strait: The tomography forward problem. J. Acoust. Soc. Amer., 140, 12861299, https://doi.org/10.1121/1.4961207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., H. Sagen, and A. Beszczynska-Möller, 2016b: Sound speed as a proxy variable to temperature in Fram Strait. J. Acoust. Soc. Amer., 140, 622630, https://doi.org/10.1121/1.4959000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., F. Gaillard, and T. Terre, 2017: Acoustic tomography in the Canary Basin: Meddies and tides. J. Geophys. Res. Oceans, 122, 89839003, https://doi.org/10.1002/2017JC013356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., J. Hall, D. E. Harrison, D. Stammer, and J. Benveniste, 2010: OceanObs’09 conference summary: Ocean information for society: Sustaining the benefits, realizing the potential. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publ. WPP-306, 9 pp., https://doi.org/10.5270/OceanObs09.Summary.

    • Crossref
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2016: ECCO version 4: Second release. Massachusetts Institute of Technology, 147 pp., http://hdl.handle.net/1721.1/102062.

  • Foster, M. S., 1991: Tomography in ocean models. Oceanography, 4 (2), 91, https://doi.org/10.5670/oceanog.1991.09.

  • Frajka-Williams, E., 2015: Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett., 42, 34583464, https://doi.org/10.1002/2015GL063220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankel, A. S., and C. W. Clark, 2002: ATOC and other factors affecting distribution and abundance of humpback whales (megaptera novaeangliae) off the north shore of Kauai. Mar. Mammal Sci., 18, 644662, https://doi.org/10.1111/j.1748-7692.2002.tb01064.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., and C. Wunsch, 1991: Efficient representation of the North Atlantic hydrographic and chemical distributions. Prog. Oceanogr., 27, 111195, https://doi.org/10.1016/0079-6611(91)90015-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. Massachusetts Institute of Technology, 10 pp., https://doi.org/1721.1/110380.

  • Gaillard, F., 1992: Evaluating the information content of tomographic data: Application to mesoscale observations. J. Geophys. Res., 97, 15 48915 505, https://doi.org/10.1029/92JC01295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparin, F., and Coauthors, 2018: A large-scale view of oceanic variability from 2007 to 2015 in the global high resolution monitoring and forecasting system at Mercator Océan. J. Mar. Syst., 187, 260276, https://doi.org/10.1016/j.jmarsys.2018.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., M. F. Mehari, M. L. Hénaff, V. H. Kourafalou, I. S. Androulidakis, H. S. Kang, and R. Atlas, 2017: North Atlantic Ocean OSSE system: Evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems. J. Oper. Oceanogr., 10, 154175, https://doi.org/10.1080/1755876X.2017.1322770.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, F. B., W. A. Kuperman, M. B. Porter, and H. Schmidt, 2011: Computational Ocean Acoustics. Modern Acoustics and Signal Processing, Springer-Verlag, 794 pp., https://doi.org/10.1007/978-1-4419-8678-8.

    • Crossref
    • Export Citation
  • Lacasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

  • Lebedev, K. V., M. Yaremchuk, H. Mitsudera, I. Nakano, and G. Yuan, 2003: Monitoring the Kuroshio Extension through dynamically constrained synthesis of the acoustic tomography, satellite altimeter and in situ data. J. Oceanogr., 59, 751763, https://doi.org/10.1023/B:JOCE.0000009568.06949.c5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Crossref
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Mazloff, M. R., B. D. Cornuelle, S. T. Gille, and A. Verdy, 2018: Correlation lengths for estimating the large-scale carbon and heat content of the southern ocean. J. Geophys. Res. Oceans, 123, 883901, https://doi.org/10.1002/2017JC013408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015: Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., M. B. Menary, J. V. Mecking, B. I. Moat, W. E. Johns, M. B. Andrew, D. Rayner, and D. A. Smeed, 2017: The importance of deep, basinwide measurements in optimized Atlantic Meridional Overturning Circulation observing arrays. J. Geophys. Res. Oceans, 122, 18081826, https://doi.org/10.1002/2016JC012200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikhalevsky, P. N., A. N. Gavrilov, and A. B. Baggeroer, 1999: The Transarctic Acoustic Propagation Experiment and climate monitoring in the Arctic. IEE J. Oceanic Eng., 24, 183201, https://doi.org/10.1109/48.757270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikhalevsky, P. N., and Coauthors, 2015: Multipurpose acoustic networks in the Integrated Arctic Ocean Observing System. Arctic, 68, 1127, https://doi.org/10.14430/arctic4449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobley, J. R., 2005: Assessing responses of humpback whales to North Pacific Acoustic Laboratory (NPAL) transmissions: Results of 2001–2003 aerial surveys north of Kauai. J. Acoust. Soc. Amer., 117, 16661673, https://doi.org/10.1121/1.1854475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morawitz, W. M. L., B. D. Cornuelle, and P. F. Worcester, 1996a: A case study in three-dimensional inverse methods: Combining hydrographic, acoustic, and moored thermistor data in the Greenland Sea. J. Atmos. Oceanic Technol., 13, 659679, https://doi.org/10.1175/1520-0426(1996)013<0659:ACSITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morawitz, W. M. L., P. J. Sutton, P. F. Worcester, B. D. Cornuelle, J. F. Lynch, and R. Pawlowicz, 1996b: Three-dimensional observations of a deep convective chimney in the Greenland Sea during winter 1988/89. J. Phys. Oceanogr., 26, 23162343, https://doi.org/10.1175/1520-0485(1996)026<2316:TDOOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1986: Acoustic monitoring of ocean gyres. J. Fluid Mech., 173, 4353, https://doi.org/10.1017/S0022112086001064.

  • Munk, W., and C. Wunsch, 1982a: Observing the ocean in the 1990s. Philos. Trans. Roy. Soc. London, 307A, 439464, https://doi.org/10.1098/rsta.1982.0120.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1982b: Up-down resolution in ocean acoustic tomography. Deep-Sea Res., 29A, 14151436, https://doi.org/10.1016/0198-0149(82)90034-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., P. F. Worcester, and C. Wunsch, 1995: Ocean Acoustic Tomography. Cambridge University Press, 433 pp.

    • Crossref
    • Export Citation
  • Nakano, I., H. Fujimori, T. Kanaizumi, T. Nakamura, and B. Howe, 2001: Meridional circulation and equatorial instability waves in the central equatorial Pacific Ocean. Proceedings of the Institute of Acoustics Conference on Acoustical Oceanography, T. G. Leighton et al., Eds., Vol. 23, Bath University Press, 2127.

  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémy, E., F. Gaillard, and J. Verron, 2002: Variational assimilation of ocean tomographic data: Twin experiments in a quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 128, 17391458, https://doi.org/10.1002/qj.200212858317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagen, H., B. D. Dushaw, E. K. Skarsoulis, D. Dumont, M. A. Dzieciuch, and A. Beszczynska-Möller, 2016: Time series of temperature in Fram Strait determined from the 2008–2009 DAMOCLES acoustic tomography measurements and an ocean model. J. Geophys. Res. Oceans, 121, 46014617, https://doi.org/10.1002/2015JC011591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scientific Committee on Ocean Research, 1994: Acoustic thermometry in the Atlantic: A report to SCOR WG 96. International Council on Scientific Unions, 18 pp., http://staff.washington.edu/dushaw/epubs/SCOR_WG96.pdf.

  • Semtner, A. J., and R. M. Chervin, 1990: Environmental effects on acoustic measures of global ocean warming. J. Geophys. Res., 95, 12 97312 982, https://doi.org/10.1029/JC095iC08p12973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Send, U., P. F. Worcester, B. D. Cornuelle, C. O. Tiemann, and B. Baschek, 2002: Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions. Deep-Sea Res. II, 49, 40694095, https://doi.org/10.1016/S0967-0645(02)00143-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheinbaum, J., 1995: Variational assimilation of simulated acoustic tomography data and point observations: A comparative study. J. Geophys. Res., 100, 20 74520 761, https://doi.org/10.1029/95JC02113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiesberger, J. L., and K. Metzger, 1992: Basin-scale ocean monitoring with acoustic thermometers. Oceanography, 5, 9298, https://doi.org/10.5670/oceanog.1992.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincenty, T., 1975: Direct and inverse solutions of geodesics on the ellipsoid with applications of nested equations. Surv. Rev., 23, 8893, https://doi.org/10.1179/sre.1975.23.176.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worcester, P. F., 2001: Tomography. Encyclopedia of Ocean Sciences, J. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press, 2969–2986.

    • Crossref
    • Export Citation
  • Worcester, P. F., and Coauthors, 1993: Evolution of the large-scale temperature field in the Greenland Sea during 1988-1989 from tomographic measurements. Geophys. Res. Lett., 20, 22112214, https://doi.org/10.1029/93GL02373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worcester, P. F., and Coauthors, 1999: A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean. J. Acoust. Soc. Amer., 105, 31853201, https://doi.org/10.1121/1.424649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worcester, P. F., and Coauthors, 2013: The North Pacific Acoustic Laboratory (NPAL) deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Amer., 134, 3359, https://doi.org/10.1121/1.4818887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M. I., and A. I. Yaremchuk, 2001: Variational inversion of the ocean acoustic tomography data using quadratic approximation to travel times. Geophys. Res. Lett., 28, 17671770, https://doi.org/10.1029/2000GL012287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M. I., K. Lebedev, and D. Nechaev, 2004: A four-dimensional inversion of the acoustic tomography, satellite altimetry and in situ data using quasigeostrophic constraints. Inverse Probl. Sci. Eng., 12, 409431, https://doi.org/10.1080/10682760310001633689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziȩba, A., 2010: Effective number of observations and unbiased estimators of variance for autocorrelated data—An overview. Metrol. Meas. Syst., 17, 316, https://doi.org/10.2478/v10178-010-0001-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 411 202 16
PDF Downloads 375 212 10

Ocean Acoustic Tomography in the North Atlantic

View More View Less
  • 1 Nansen Environmental and Remote Sensing Center, Bergen, Norway
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An objective mapping exercise simulating observations of temperature in the North Atlantic Ocean was used to assess the resolution capabilities of ocean acoustic tomography in combination with Argo floats. A set of basis functions for a basinwide area was obtained from a singular value decomposition of a covariance derived from an ocean state estimate. As demonstrated by the formal uncertainty estimates from the objective maps, Argo and tomography are complementary measurements. In several examples, each separately obtained uncertainty for determining large-scale monthly average temperature of about 50% of prior (resolved 75% of variance), while when both data were employed, uncertainties were reduced to about 25% of prior (resolved 94% of variance). Possible tomography configurations range from arrays that span specific regions to line arrays that supplement existing observations to arrays that span the Atlantic basin. A basinwide array consisting of two acoustic sources and seven receivers can be used to significantly reduce the uncertainties of estimated broad-scale temperature. An optimal observing system study would comprise simulated measurements in combination with data assimilation techniques and numerical ocean modeling. This objective map study, however, showed that the addition of tomography to the existing observing system could substantially reduce the uncertainties for estimated large-scale temperature. To the extent that tomography offers a 50% reduction in uncertainty at a fraction of the cost of the Argo program, it is a cost-effective contribution to the ocean observing system.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian D. Dushaw, brian.dushaw@gmail.com

Abstract

An objective mapping exercise simulating observations of temperature in the North Atlantic Ocean was used to assess the resolution capabilities of ocean acoustic tomography in combination with Argo floats. A set of basis functions for a basinwide area was obtained from a singular value decomposition of a covariance derived from an ocean state estimate. As demonstrated by the formal uncertainty estimates from the objective maps, Argo and tomography are complementary measurements. In several examples, each separately obtained uncertainty for determining large-scale monthly average temperature of about 50% of prior (resolved 75% of variance), while when both data were employed, uncertainties were reduced to about 25% of prior (resolved 94% of variance). Possible tomography configurations range from arrays that span specific regions to line arrays that supplement existing observations to arrays that span the Atlantic basin. A basinwide array consisting of two acoustic sources and seven receivers can be used to significantly reduce the uncertainties of estimated broad-scale temperature. An optimal observing system study would comprise simulated measurements in combination with data assimilation techniques and numerical ocean modeling. This objective map study, however, showed that the addition of tomography to the existing observing system could substantially reduce the uncertainties for estimated large-scale temperature. To the extent that tomography offers a 50% reduction in uncertainty at a fraction of the cost of the Argo program, it is a cost-effective contribution to the ocean observing system.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian D. Dushaw, brian.dushaw@gmail.com
Save