• Abramovich, Y. I., B. A. Johnson, and X. Mestre, 2009: DOA estimation in the small-sample threshold region. Classical and Modern Direction-of-Arrival Estimation, T. E. Tuncer and B. Friedlander, Eds., Academic Press, 219–287, https://doi.org/10.1016/B978-0-12-374524-8.00006-4.

    • Crossref
    • Export Citation
  • Amar, A., and A. J. Weiss, 2007: Resolution of closely spaced deterministic with given success rate signals. Proceedings: 2007 IEEE International Symposium on Information Theory, IEEE, 1791–1795, https://doi.org/10.1109/ISIT.2007.4557481.

    • Crossref
    • Export Citation
  • Barbin, Y., P. Broche, J. de Maistre, P. Forget, and J. Gaggelli, 2006: Practical results of Direction Finding method applied on a 4 antenna linear array WERA. Proc. Sixth Int. Workshop on Radio Oceanography (ROW-6), Hamburg, Germany, Universität Hamburg, http://wera.cen.uni-hamburg.de/ROW_2006/Abstract_Barbin_2.shtml.

  • Barrick, D. E., and J. B. Snider, 1977: The statistics of HF sea-echo Doppler spectra. IEEE J. Oceanic Eng., 2, 1928, https://doi.org/10.1109/JOE.1977.1145317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., and B. J. Lipa, 1996: Comparison of direction-finding and beam-forming in HF radar ocean surface current mapping. NOAA Phase 1 SBIR Final Rep., Contract 50-DKNA-5-00092, 81 pp.

  • Barrick, D. E., and B. J. Lipa, 1999: Radar angle determination with MUSIC direction finding. U.S. Patent 5,990,834, filed 29 August 1997, and issued 23 November 1999.

  • Bendat, J. S., and A. G. Piersol, 2000: Random Data: Analysis and Measurement Procedures. 3rd ed. Wiley Series in Probability and Statistics, 594 pp.

  • Buijsman, M., Y. Uchiyama, J. McWilliams, and C. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California Bight. J. Phys. Oceanogr., 42, 6277, https://doi.org/10.1175/2011JPO4597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, R. D., and H. C. Graber, 1997: Validation of HF radar measurements. Oceanography, 10 (2), 7679, https://doi.org/10.5670/oceanog.1997.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, R. D., L. Shay, H. C. Graber, J. Edson, A. Karachintsev, C. Trump, and D. Ross, 1997: On the accuracy of HF radar surface current measurements: Intercomparisons with ship-based sensors. J. Geophys. Res., 102, 18 737, https://doi.org/10.1029/97JC00049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CODAR, 2002: Defining first-order region boundaries. CODAR Ocean Sensors Ltd., Tech. Rep., 9 pp.

  • Cook, T. M., T. DePaolo, and E. J. Terrill, 2007: Estimates of radial current error from high frequency radar using MUSIC for bearing determination. OCEANS 2007, IEEE, 6 pp., https://doi.org/10.1109/OCEANS.2007.4449257.

    • Crossref
    • Export Citation
  • Cosoli, S., A. Mazzoldi, and M. Gačić, 2010: Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars. J. Atmos. Oceanic Technol., 27, 908919, https://doi.org/10.1175/2009JTECHO680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosoli, S., G. Bolzon, and A. Mazzoldi, 2012: A real-time and offline quality control methodology for SeaSonde high-frequency radar currents. J. Atmos. Oceanic Technol., 29, 13131328, https://doi.org/10.1175/JTECH-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Paolo, T., and E. Terrill, 2007: Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm. J. Atmos. Oceanic Technol., 24, 12771300, https://doi.org/10.1175/JTECH2040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Paolo, T., T. Cook, and E. Terrill, 2007: Properties of HF RADAR compact antenna arrays and their effect on the music algorithm. OCEANS 2007, IEEE, 10 pp., https://doi.org/10.1109/OCEANS.2007.4449265.

    • Crossref
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. CRC Press, 456 pp.

    • Crossref
    • Export Citation
  • Emery, B. M., 2018: HFR CS processing toolbox for MATLAB, v1.0. Zendo, https://doi.org/10.5281/zenodo.1451950.

    • Crossref
    • Export Citation
  • Emery, B. M., L. Washburn, and J. Harlan, 2004: Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J. Atmos. Oceanic Technol., 21, 12591271, https://doi.org/10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, B. M., L. Washburn, C. Whelan, D. Barrick, and J. Harlan, 2014: Measuring antenna patterns for ocean surface current HF radars with ships of opportunity. J. Atmos. Oceanic Technol., 31, 15641582, https://doi.org/10.1175/JTECH-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, P., 2015: Noise properties of HF radar measurement of ocean surface currents. Radio Sci., 50, 764777, https://doi.org/10.1002/2015RS005681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, P., Y. Barbin, and G. André, 2008: Monitoring of surface ocean circulation in the Gulf of Lions (North-West Mediterranean Sea) using WERA HF radars. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. I, IEEE, I375–I378, https://doi.org/10.1109/IGARSS.2008.4778872.

    • Crossref
    • Export Citation
  • Friedlander, B., 2009: Wireless direction-finding fundamentals. Classical and Modern Direction-of-Arrival Estimation, T. E. Tuncer and B. Friedlander, Eds., Elsevier, 1–51.

    • Crossref
    • Export Citation
  • Graber, H. C., B. K. Haus, R. D. Chapman, and L. K. Shay, 1997: HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications. J. Geophys. Res., 102, 18 74918 766, https://doi.org/10.1029/97JC01190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurgel, K. W., G. Antonischki, H. H. Essen, and T. Schlick, 1999: Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coastal Eng., 37, 219234, https://doi.org/10.1016/S0378-3839(99)00027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2017: Improved detection of the first-order region for direction-finding HF radars using image processing techniques. J. Atmos. Oceanic Technol., 34, 16791691, https://doi.org/10.1175/JTECH-D-16-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., T. De Paolo, and E. Terrill, 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, https://doi.org/10.1175/JTECH-D-11-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., and S. M. Glenn, 2003: Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Oceanic Technol., 20, 13031316, https://doi.org/10.1175/1520-0426(2003)020<1303:IHRSCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., H. J. Roarty, and S. M. Glenn, 2006: Characterizing observed environmental variability with HF Doppler radar surface current mappers and acoustic Doppler current profilers: Environmental variability in the coastal ocean. IEEE J. Oceanic Eng., 31, 876884, https://doi.org/10.1109/JOE.2006.886095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krim, H., and M. Viberg, 1996: Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag., 13, 6794, https://doi.org/10.1109/79.526899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, Y. Zeng, and B. Wen, 2017a: Accuracy assessment of surface current velocities observed by OSMAR-S high-frequency radar system. IEEE J. Oceanic Eng., 43, 10681074, https://doi.org/10.1109/JOE.2017.2769179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, Y. Zeng, and B. Wen, 2017b: Ocean surface current observation with a dual monopole-cross-loop antenna array. Int. J. Antennas Propag., 2017, 2754831, https://doi.org/10.1155/2017/2754831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, Y. Zeng, and B. Wen, 2017c: Quantifying and reducing the DOA estimation error resulting from antenna pattern deviation for direction-finding HF radar. Remote Sens., 9, 1285, https://doi.org/10.3390/rs9121285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laws, K. E., D. M. Fernandez, and J. D. Paduan, 2000: Simulation-based evaluations of HF radar ocean current algorithms. IEEE J. Oceanic Eng., 25, 481491, https://doi.org/10.1109/48.895355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laws, K. E., J. D. Paduan, and J. Vesecky, 2010: Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Oceanic Technol., 27, 10291043, https://doi.org/10.1175/2009JTECHO658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2007: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Classics in Applied Mathematics, SIAM, 184 pp.

    • Crossref
    • Export Citation
  • Lipa, B. J., and D. E. Barrick, 1983: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE. IEEE J. Oceanic Eng., 8, 226253, https://doi.org/10.1109/JOE.1983.1145578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., B. Nyden, D. S. Ullman, and E. Terrill, 2006: SeaSonde radial velocities: Derivation and internal consistency. IEEE J. Oceanic Eng., 31, 850861, https://doi.org/10.1109/JOE.2006.886104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, C. R. Merz, S. Lichtenwalner, and G. J. Kirkpatrick, 2010: HF radar performance in a low-energy environment: CODAR SeaSonde experience on the West Florida Shelf. J. Atmos. Oceanic Technol., 27, 16891710, https://doi.org/10.1175/2010JTECHO720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. R. Merz, 2014: Assessment of CODAR SeaSonde and WERA HF radars in mapping surface currents on the West Florida shelf. J. Atmos. Oceanic Technol., 31, 13631382, https://doi.org/10.1175/JTECH-D-13-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente, P., J. Soto-Navarro, E. Alvarez Fanjul, and S. Piedracoba, 2014: Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar. J. Oper. Oceanogr., 7 (2), 5973, https://doi.org/10.1080/1755876X.2014.11020300.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., P. M. Poulain, P. Forget, A. Griffa, Y. Barbin, J. Gaggelli, J. C. De Maistre, and M. Rixen, 2009: Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J. Mar. Syst., 78, S79S89, https://doi.org/10.1016/j.jmarsys.2009.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Donnell, J., and Coauthors, 2005: Integration of Coastal Ocean Dynamics Application Radar (CODAR) and Short-Term Predictive System (STPS) surface current estimates into the Search and Rescue Optimal Planning System (SAROPS). U.S. Coast Guard Research and Development Center Rep. CG-D-01-2006, 163 pp.

  • Ohlmann, C., P. White, L. Washburn, E. Terrill, B. Emery, and M. Otero, 2007: Interpretation of coastal HF radar-derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, https://doi.org/10.1175/JTECH1998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., J. S. Allen, R. N. Miller, G. D. Egbert, and P. M. Kosro, 2002: Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2000JC000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orfila, A., A. Molcard, J. M. Sayol, J. Marmain, L. Bellomo, C. Quentin, and Y. Barbin, 2015: Empirical forecasting of HF-radar velocity using genetic algorithms. IEEE Trans. Geosci. Remote Sens., 53, 28752886, https://doi.org/10.1109/TGRS.2014.2366294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., K. C. Kim, M. S. Cook, and F. P. Chavez, 2006: Calibration and validation of direction-finding high-frequency radar ocean surface current observations. IEEE J. Oceanic Eng., 31, 862875, https://doi.org/10.1109/JOE.2006.886195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., D. A. Siegel, J. C. McWilliams, Y. Uchiyama, and C. Jones, 2016: Characterizing storm water dispersion and dilution from small coastal streams. J. Geophys. Res. Oceans, 121, 39263943, https://doi.org/10.1002/2015JC011323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 34, 276280, https://doi.org/10.1109/TAP.1986.1143830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sentchev, A., P. Forget, Y. Barbin, and M. Yaremchuk, 2013: Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping. J. Mar. Syst., 109–110 (Suppl.), S153S168, https://doi.org/10.1016/j.jmarsys.2011.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Stoica, P., and R. L. Moses, 2005: Spectral Analysis of Signals. Pearson Prentice Hall, 452 pp.

  • Stoica, P., and A. Nehorai, 1989: Music, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 37, 720741, https://doi.org/10.1109/29.17564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., B. Wen, J. Tan, and Z. Li, 2017: Study on pattern distortion and DOA estimation performance of crossed-loop/monopole antenna in HF radar. IEEE Trans. Antennas Propag., 65, 60956106, https://doi.org/10.1109/TAP.2017.2755442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuncer, E., and B. Friedlander, 2009: Classical and Modern Direction-of-Arrival Estimation. T. E. Tuncer and B. Friedlander, Academic Press, 456 pp.

  • Uchiyama, Y., E. Y. Idica, J. C. McWilliams, and K. D. Stolzenbach, 2014: Wastewater effluent dispersal in Southern California Bays. Cont. Shelf Res., 76, 3652, https://doi.org/10.1016/j.csr.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Trees, H. L., 2002: Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory. John Wiley & Sons, 1472 pp., https://doi.org/10.1002/0471221104.

    • Crossref
    • Export Citation
  • Xu, X.-L., and K. M. Buckley, 1992: Statistical performance analysis of the MUSIC location estimator. IEEE Trans. Signal Process., 40, 25592569, https://doi.org/10.1109/78.157296.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 337 193 15
PDF Downloads 279 167 13

Uncertainty Estimates for SeaSonde HF Radar Ocean Current Observations

View More View Less
  • 1 Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
  • | 2 Department of Geography, and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

HF radars typically produce maps of surface current velocities without estimates of the measurement uncertainties. Many users of HF radar data, including spill response and search and rescue operations, incorporate these observations into models and would thus benefit from quantified uncertainties. Using both simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents from the Regional Ocean Modeling System show a close correspondence between direction of arrival (DOA) errors and estimated uncertainties, with mean values of 15° at 10 dB, falling to less than 3° at 30 dB. Observations from two operational SeaSondes have average DOA uncertainties of 2.7° and 3.8°, with a fraction of the observations (10.5% and 7.1%, respectively) having uncertainties of >10°. Using DOA uncertainties for data quality control improves time series comparison statistics between the two radars, with r2=0.6 increasing to r2=0.75 and RMS difference decreasing from 15 to 12 cm s−1. The analysis illustrates the major sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for assimilation into numerical models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian Emery, brian.emery@ucsb.edu

Abstract

HF radars typically produce maps of surface current velocities without estimates of the measurement uncertainties. Many users of HF radar data, including spill response and search and rescue operations, incorporate these observations into models and would thus benefit from quantified uncertainties. Using both simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents from the Regional Ocean Modeling System show a close correspondence between direction of arrival (DOA) errors and estimated uncertainties, with mean values of 15° at 10 dB, falling to less than 3° at 30 dB. Observations from two operational SeaSondes have average DOA uncertainties of 2.7° and 3.8°, with a fraction of the observations (10.5% and 7.1%, respectively) having uncertainties of >10°. Using DOA uncertainties for data quality control improves time series comparison statistics between the two radars, with r2=0.6 increasing to r2=0.75 and RMS difference decreasing from 15 to 12 cm s−1. The analysis illustrates the major sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for assimilation into numerical models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brian Emery, brian.emery@ucsb.edu
Save