• Allotta, B., R. Costanzi, E. Meli, L. Pugi, A. Ridolfi, and G. Vettori, 2014: Cooperative localization of a team of AUVs by a tetrahedral configuration. Rob. Auton. Syst., 62, 12281237, https://doi.org/10.1016/j.robot.2014.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allotta, B., and Coauthors, 2015: Typhoon at CommsNet13: Experimental experience on AUV navigation and localization. Annu. Rev. Control, 40, 157171, https://doi.org/10.1016/j.arcontrol.2015.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allotta, B., A. Caiti, R. Costanzi, F. Fanelli, D. Fenucci, E. Meli, and A. Ridolfi, 2016: A new AUV navigation system exploiting unscented Kalman filter. Ocean Eng., 113, 121132, https://doi.org/10.1016/j.oceaneng.2015.12.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, K. W., and Y. W. Huang, 2008: An intelligent navigator for seamless INS/GPS integrated land vehicle navigation applications. Appl. Soft Comput., 8, 722733, https://doi.org/10.1016/j.asoc.2007.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, K. W., Y. W. Huang, C. Y. Li, and H. W. Chang, 2011: An ANN embedded RTS smoother for an INS/GPS integrated Positioning and Orientation System. Appl. Soft Comput., 11, 26332644, https://doi.org/10.1016/j.asoc.2010.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Ruiter, H. D., and B. Benhabib, 2008: Visual-model-based, real-time 3D pose tracking for autonomous navigation: Methodology and experiments. Auton. Rob., 25, 267286, https://doi.org/10.1007/s10514-008-9094-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, B., L. L. Ying, S. J. Zhang, X. Feng, T. H. Yan, R. Nian, and Y. Shen, 2015: Autonomous navigation based on unscented-FastSLAM using particle swarm optimization for autonomous underwater vehicles. Measurement, 71, 89101, https://doi.org/10.1016/j.measurement.2015.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, P. M., and B. H. Jun, 2007: Pseudo long base line navigation algorithm for underwater vehicles with inertial sensors and two acoustic range measurements. Ocean Eng., 34, 416425, https://doi.org/10.1016/j.oceaneng.2006.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, K. T., J. F. Whidborne, D. Purdy, and P. Barber, 2011: Road vehicle state estimation using low-cost GPS/INS. Mech. Syst. Signal Process., 25, 19882004, https://doi.org/10.1016/j.ymssp.2010.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D. J., Y. H. Chen, J. G. Shi, and C. J. Yang, 2015: Autonomous underwater vehicle docking system for cabled ocean observatory network. Ocean Eng., 109, 127134, https://doi.org/10.1016/j.oceaneng.2015.08.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. L., W. Q. Wu, J. L. Wang, and M. P. Wu, 2014: A novel backtracking navigation scheme for autonomous underwater vehicles. Measurement, 47, 496504, https://doi.org/10.1016/j.measurement.2013.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y. Q., and Y. M. Jia, 2015: A nonlinear quaternion-based fault-tolerant SINS/GPS integrated navigation method for autonomous UAVs. Aerosp. Sci. Technol., 40, 191199, https://doi.org/10.1016/j.ast.2014.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgado, M., P. Batista, P. Oliveira, and C. Silvestre, 2011: Position USBL/DVL sensor-based navigation filter in the presence of unknown ocean currents. Automatica, 47, 26042614, https://doi.org/10.1016/j.automatica.2011.09.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahawneh, L. R., M. A. Al-Jarrah, K. Assaleh, and M. F. Abdel-Hafez, 2011: Real-time implementation of GPS aided low-cost strapdown inertia navigation system. J. Intell. Rob. Syst., 61, 527544, https://doi.org/10.1007/s10846-010-9501-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stelzer, A., H. Hirschmüller, and M. Görner, 2012: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Rob. Res., 31, 381402, https://doi.org/10.1177/0278364911435161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallicrosa, G., P. Ridao and D. Ribas, 2015: AUV single beacon range-only SLAM with a SOG filter. IFAC-PapersOnLine, 48, 2631, https://doi.org/10.1016/j.ifacol.2015.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Ge, and X. Y. Wang, 2016: Attitude and position measurement of bit for underwater horizontal directional drilling system. Ocean Eng., 123, 253261, https://doi.org/10.1016/j.oceaneng.2016.07.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S. W., C. C. Wang, and C. Thorpe, 2011: The annotated laser data set for navigation in urban areas. Int. J. Rob. Res., 30, 10951099, https://doi.org/10.1177/0278364910389840.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 45 4
PDF Downloads 108 80 1

Navigation Algorithm Applied to the Bit of Underwater Horizontal Directional Drilling in a Vibration Environment

View More View Less
  • 1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In its working state, the bit used in underwater horizontal directional drilling (UHDD) produces a high-frequency vibration that can affect accuracy of navigation. We designed a low-pass filter with linear phase on the basis of spectral characteristics of sensor data. To improve further the accuracy of navigation, we deduce the state error model on the basis of the random walk model of acceleration and angular velocity. We use an indirect Kalman filter algorithm to correct the attitude and position of the bit used with UHDD on the basis of observations coming from our working state analysis. Last, we derive a complete navigation algorithm function, including the acquisition method of steady-state component of acceleration and angular velocity. Experimental results show that the navigation algorithm proposed in this paper can obtain accurate attitude and location information of the bit in a vibration environment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Yang, yjs2yangke@126.com

Abstract

In its working state, the bit used in underwater horizontal directional drilling (UHDD) produces a high-frequency vibration that can affect accuracy of navigation. We designed a low-pass filter with linear phase on the basis of spectral characteristics of sensor data. To improve further the accuracy of navigation, we deduce the state error model on the basis of the random walk model of acceleration and angular velocity. We use an indirect Kalman filter algorithm to correct the attitude and position of the bit used with UHDD on the basis of observations coming from our working state analysis. Last, we derive a complete navigation algorithm function, including the acquisition method of steady-state component of acceleration and angular velocity. Experimental results show that the navigation algorithm proposed in this paper can obtain accurate attitude and location information of the bit in a vibration environment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Yang, yjs2yangke@126.com
Save