On the Long-Wavelength Validation of the SWOT KaRIn Measurement

Jinbo Wang Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Jinbo Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5034-5566
and
Lee-Lueng Fu Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Lee-Lueng Fu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Surface Water and Ocean Topography (SWOT) mission will measure the sea surface height (SSH) using a Ka-band radar interferometer (KaRIn) over a swath off the nadir of the satellite tracks. The mission requires calibration and validation (CalVal) of the SSH wavenumber spectrum at wavelengths between 15 and 1000 km. The CalVal in the short-wavelength range (15–150 km) requires in situ observations. In the long-wavelength range (150–1000 km), the CalVal will use the onboard Jason-class nadir altimeter. Using a high-resolution global ocean simulation, this study identifies the spatial scales beyond which the nadir and off-nadir observations can be considered comparable. Our results suggest that the ocean signals at nadir can represent off-nadir ocean signals at wavelengths longer than 120 and 70 km along the midswath and the inner edge of the KaRIn grid, respectively, indicating that the nadir altimeter is able to fulfill its goal to validate the long-wavelength KaRIn measurement. The wavelength along the inner edge is limited around 70 km because the onboard nadir altimeter cannot resolve spatial scales longer than ~70 km. These wavelengths provide a reference point for the required spatial coverage of the SWOT SSH in situ CalVal.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinbo Wang, jinbow@alum.mit.edu

Abstract

The Surface Water and Ocean Topography (SWOT) mission will measure the sea surface height (SSH) using a Ka-band radar interferometer (KaRIn) over a swath off the nadir of the satellite tracks. The mission requires calibration and validation (CalVal) of the SSH wavenumber spectrum at wavelengths between 15 and 1000 km. The CalVal in the short-wavelength range (15–150 km) requires in situ observations. In the long-wavelength range (150–1000 km), the CalVal will use the onboard Jason-class nadir altimeter. Using a high-resolution global ocean simulation, this study identifies the spatial scales beyond which the nadir and off-nadir observations can be considered comparable. Our results suggest that the ocean signals at nadir can represent off-nadir ocean signals at wavelengths longer than 120 and 70 km along the midswath and the inner edge of the KaRIn grid, respectively, indicating that the nadir altimeter is able to fulfill its goal to validate the long-wavelength KaRIn measurement. The wavelength along the inner edge is limited around 70 km because the onboard nadir altimeter cannot resolve spatial scales longer than ~70 km. These wavelengths provide a reference point for the required spatial coverage of the SWOT SSH in situ CalVal.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinbo Wang, jinbow@alum.mit.edu
Save
  • Arbic, B. K., and Coauthors, 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, GODAE OceanView, 307–391, https://www.godae.org/~godae-data/School/Chapter13_Arbic_et_al.pdf.

  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P. Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., L.-L. Fu, D. P. Lettenmaier, D. E. Alsdorf, E. Rodriguez, and D. Esteban-Fernandez, 2010: The Surface Water and Ocean Topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766779, https://doi.org/10.1109/JPROC.2010.2043031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esteban-Fernandez, D., 2017: SWOT project: Mission performance and error budget—Revision A. Jet Propulsion Laboratory Doc. JPL D-79084, 117 pp., https://swot.jpl.nasa.gov/docs/SWOT_D-79084_v10Y_FINAL_REVA__06082017.pdf.

  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016: The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Oceanic Technol., 33, 119126, https://doi.org/10.1175/JTECH-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C., T. Chereskin, G. Gille, and D. Menemenlis, 2016a: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C., S. Gille, T. Chereskin, and D. Menemenlis, 2016b: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A., and Coauthors, 2017: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tchilibou, M., L. Gourdeau, R. Morrow, G. Serazin, B. Djath, and F. Lyard, 2018: Spectral signatures of the tropical Pacific dynamics from model and altimetry: A focus on the meso-/submesoscale range. Ocean Sci., 14, 12831301, https://doi.org/10.5194/os-14-1283-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, B. Qiu, D. Menemenlis, T. J. Farrar, Y. Chao, A. F. Thompson, and M. M. Flexas, 2018: An observing system simulation experiment for the calibration and validation of the Surface Water Ocean Topography sea surface height measurement using in situ platforms. J. Atmos. Oceanic Technol., 35, 281297, https://doi.org/10.1175/JTECH-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, H. S. Torres, S. Chen, B. Qiu, and D. Menemenlis, 2019: On the spatial scales to be resolved by the Surface Water and Ocean Topography Ka-band radar interferometer. J. Atmos. Oceanic Technol., 36, 8799, https://doi.org/10.1175/JTECH-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 789 188 22
PDF Downloads 679 174 18