An Automated Detection Methodology for Dry Well-Mixed Layers

Stephen D. Nicholls Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Stephen D. Nicholls in
Current site
Google Scholar
PubMed
Close
and
Karen I. Mohr Laboratory for Atmospheres, Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Karen I. Mohr in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The intense surface heating over arid land surfaces produces dry well-mixed layers (WML) via dry convection. These layers are characterized by nearly constant potential temperature and low, nearly constant water vapor mixing ratio. To further the study of dry WMLs, we created a detection methodology and supporting software to automate the identification and characterization of dry WMLs from multiple data sources including rawinsondes, remote sensing platforms, and model products. The software is a modular code written in Python, an open-source language. Radiosondes from a network of synoptic stations in North Africa were used to develop and test the WML detection process. The detection involves an iterative decision tree that ingests a vertical profile from an input data file, performs a quality check for sufficient data density, and then searches upward through the column for successive points where the simultaneous changes in water vapor mixing ratio and potential temperature are less than the specified maxima. If points in the vertical profile meet the dry WML identification criteria, statistics are generated detailing the characteristics of each layer in the profile. At the end of the vertical profile analysis, there is an option to plot analyzed profiles in a variety of file formats. Initial results show that the detection methodology can be successfully applied across a wide variety of input data and North African environments and for all seasons. It is sensitive enough to identify dry WMLs from other types of isentropic phenomena such as subsidence layers and distinguish the current day’s dry WML from previous days.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-18-0149.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Nicholls, stephen.d.nicholls@nasa.gov

Abstract

The intense surface heating over arid land surfaces produces dry well-mixed layers (WML) via dry convection. These layers are characterized by nearly constant potential temperature and low, nearly constant water vapor mixing ratio. To further the study of dry WMLs, we created a detection methodology and supporting software to automate the identification and characterization of dry WMLs from multiple data sources including rawinsondes, remote sensing platforms, and model products. The software is a modular code written in Python, an open-source language. Radiosondes from a network of synoptic stations in North Africa were used to develop and test the WML detection process. The detection involves an iterative decision tree that ingests a vertical profile from an input data file, performs a quality check for sufficient data density, and then searches upward through the column for successive points where the simultaneous changes in water vapor mixing ratio and potential temperature are less than the specified maxima. If points in the vertical profile meet the dry WML identification criteria, statistics are generated detailing the characteristics of each layer in the profile. At the end of the vertical profile analysis, there is an option to plot analyzed profiles in a variety of file formats. Initial results show that the detection methodology can be successfully applied across a wide variety of input data and North African environments and for all seasons. It is sensitive enough to identify dry WMLs from other types of isentropic phenomena such as subsidence layers and distinguish the current day’s dry WML from previous days.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-18-0149.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Nicholls, stephen.d.nicholls@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.52 MB)
Save
  • Agustí-Panareda, A., A. Beljaars, C. Cardinali, I. Genkova, and C. Thorncroft, 2010: Impact of assimilating AMMA soundings on ECMWF analyses and forecasts. Wea. Forecasting, 25, 11421160, https://doi.org/10.1175/2010WAF2222370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 8197, https://doi.org/10.1002/joc.3667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, R. G., 2004: Identifying ecoregion boundaries. Environ. Manage., 34, S14S26, https://doi.org/10.1007/s00267-003-0163-6.

  • Bailey, R. G., 2014: Ecoregions: The Ecosystem Geography of the Oceans and Continents. 2nd ed. Springer, 180 pp.

    • Crossref
    • Export Citation
  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 330343, https://doi.org/10.1175/1520-0493(1986)114<0330:SEOSHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, and G. M. Devine, 2012: The effect of orography and surface albedo on stratification in the summertime Saharan boundary layer: Dynamics and implications for dust transport. J. Geophys. Res., 117, D05105, https://doi.org/10.1029/2011JD015965.

    • Crossref
    • Export Citation
  • Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch, 2007: Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Global Planet. Change, 57, 124138, https://doi.org/10.1016/j.gloplacha.2006.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, W. J., 2005: A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Trans. Geosci. Remote Sens., 43, 25352546, https://doi.org/10.1109/TGRS.2005.855071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, W. J., 2012: Neural network Jacobian analysis for high-resolution profiling of the atmosphere. EURASIP J. Adv. Signal Process., 2012, 7182, https://doi.org/10.1186/1687-6180-2012-71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, W. J., and A. B. Milstein, 2014: A neural network retrieval technique for high-resolution profiling of cloudy atmospheres. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 12601270, https://doi.org/10.1109/JSTARS.2014.2304701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Born, K., A. H. Fink, and P. Knippertz, 2010: Meteorological processes influencing the weather and climate of Morocco. Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa, P. Speth et al., Eds., Springer, 150–163.

  • Bou Karam, D., E. Williams, M. Janiga, C. Flamant, M. McGraw-Herdeg, J. Cuesta, A. Auby, and C. Thorncroft, 2014: Synoptic-scale dust emissions over the Sahara Desert initiated by a moist convective cold pool in early August 2006. Quart. J. Roy. Meteor. Soc., 140, 25912607, https://doi.org/10.1002/qj.2326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bounoua, L., and T. N. Krishnamurti, 1991: Thermodynamic budget of the five day wave over the Saharan Desert during summer. Meteor. Atmos. Phys., 47, 125, https://doi.org/10.1007/BF01025823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camberlin, P., 2009: Nile basin climates. The Nile: Origin, Environments, Limnology and Human Use, H. J. Dumont, Ed., Springer, 307–333.

    • Crossref
    • Export Citation
  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20, 203226, https://doi.org/10.3402/tellusa.v20i2.10002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531473, https://doi.org/10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, F. H., and J. P. Millard, 1985: A composite study of comma clouds and their association with severe weather over the Great Plains. Mon. Wea. Rev., 113, 370387, https://doi.org/10.1175/1520-0493(1985)113<0370:ACSOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, C., and D. H. Staelin, 2006: Cloud clearing of Atmospheric Infrared Sounder hyperspectral infrared radiances using stochastic methods. J. Geophys. Res., 111, D09S18, https://doi.org/10.1029/2005JD006013.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations. J. Atmos. Sci., 63, 11511178, https://doi.org/10.1175/JAS3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuesta, J., and Coauthors, 2008: Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. J. Geophys. Res., 113, D00C07, https://doi.org/10.1029/2007JD009417.

    • Search Google Scholar
    • Export Citation
  • Cuesta, J., J. H. Marsham, D. J. Parker, and C. Flamant, 2009: Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos. Sci. Lett., 10, 3442, https://doi.org/10.1002/asl.207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faccani, C., and Coauthors, 2009: The impacts of AMMA radiosonde data on the French global assimilation and forecast system. Wea. Forecasting, 24, 12681286, https://doi.org/10.1175/2009WAF2222237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., 2017: Mean climate and seasonal cycle. Meteorology of Tropical West Africa, D. J. Parker and M. Diop-Kane, Eds., Wiley Blackwell, 1–39.

  • Fink, A. H., and Coauthors, 2011: Operational meteorology in West Africa: Observational networks, weather analysis and forecasting. Atmos. Sci. Lett., 12, 135141, https://doi.org/10.1002/asl.324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, R. G. J., C. L. Bain, P. Knippertz, J. H. Marsham, and D. J. Parker, 2015: The West African monsoon onset: A concise comparison of definitions. J. Climate, 28, 86738694, https://doi.org/10.1175/JCLI-D-15-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., J.-P. Chaboureau, D. J. Parker, C. M. Taylor, J.-P. Cammas, O. Bock, F. Timouk, and J. Pelon, 2007: Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African monsoon. Quart. J. Roy. Meteor. Soc., 133, 11751189, https://doi.org/10.1002/qj.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor., 79, 265278, https://doi.org/10.1007/BF00119441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and Coauthors, 2013: The impact of convective cold pool outflows on model biases in the Sahara. Geophys. Res. Lett., 40, 16471652, https://doi.org/10.1002/grl.50239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and Coauthors, 2015: The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci., 72, 693713, https://doi.org/10.1175/JAS-D-13-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gounou, A., F. Guichard, and F. Couvreux, 2012: Observations of diurnal cycles over a West African meridional transect: Pre-monsoon and full-monsoon seasons. Bound.-Layer Meteor., 144, 329357, https://doi.org/10.1007/s10546-012-9723-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, M. A., M. Sprenger, and R. W. Moore, 2011: Central European tornado environments as viewed from a potential vorticity and Lagrangian perspective. Atmos. Res., 101, 3145, https://doi.org/10.1016/j.atmosres.2011.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., M. Shepherd, P. Miller, and S. E. Sarnat, 2017: The role of mesoscale-convective processes in explaining the 21 November 2016 epidemic thunderstorm asthma event in Melbourne, Australia. J. Appl. Meteor. Climatol., 56, 13371343, https://doi.org/10.1175/JAMC-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., and T. Kawano, 2015: How does mid-tropospheric dry air affect the evolution of supercellular convection? Atmos. Res., 157, 116, https://doi.org/10.1016/j.atmosres.2015.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, https://doi.org/10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2003: Tropical–extratropical interactions causing precipitation in northwest Africa: Statistical analysis and seasonal variations. Mon. Wea. Rev., 131, 30693076, https://doi.org/10.1175/1520-0493(2003)131<3069:TICPIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2010: The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res., 115, D12117, https://doi.org/10.1029/2009JD012819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., M. Christoph, and P. Speth, 2003: Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteor. Atmos. Phys., 83, 6788, https://doi.org/10.1007/s00703-002-0561-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Coauthors, 2009: Dust mobilization and transport in the northern Sahara during SAMUM 2006—A meteorological overview. Tellus, 61B, 1231, https://doi.org/10.1111/j.1600-0889.2008.00380.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 26602673, https://doi.org/10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lélé, M. I., and P. J. Lamb, 2010: Variability of the intertropical front (ITF) and rainfall over the West African Sudan–Sahel zone. J. Climate, 23, 39844004, https://doi.org/10.1175/2010JCLI3277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2018: Synoptic environments and characteristics of convection reaching the tropopause over northeast China. Mon. Wea. Rev., 146, 745759, https://doi.org/10.1175/MWR-D-17-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and B. S. Ferrier, 2000: Sensitivity of tropical West Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci., 57, 23512373, https://doi.org/10.1175/1520-0469(2000)057<2351:SOTWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X. L., T. J. Schmit, and W. L. Smith, 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501513, https://doi.org/10.1175/1520-0450(1999)038<0501:ANPRAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, C. M. Grams, B. T. Johnson, W. M. F. Grey, and A. N. Ross, 2008: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8, 69796993, https://doi.org/10.5194/acp-8-6979-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., and Coauthors, 2013: Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 intensive observation period. J. Geophys. Res. Atmos., 118, 40694089, https://doi.org/10.1002/jgrd.50211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, M. C. Todd, J. R. Banks, H. E. Brindley, L. Garcia-Carreras, A. J. Roberts, and C. L. Ryder, 2016: The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low. Atmos. Chem. Phys., 16, 35633575, https://doi.org/10.5194/acp-16-3563-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsangouras, I. T., P. T. Nastos, H. B. Bluestein, and M. V. Sioutas, 2014: A climatology of tornadic activity over Greece based on historical records. Int. J. Climatol., 34, 25382555, https://doi.org/10.1002/joc.3857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., R. A. Houze Jr., A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, https://doi.org/10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellite-based Atmospheric Infrared Sounder development and applications. Bull. Amer. Meteor. Soc., 99, 583603, https://doi.org/10.1175/BAMS-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., D. J. Parker, O. Reitebuch, A. Agusti-Panareda, C. M. Taylor, and J. Cuesta, 2010: Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quart. J. Roy. Meteor. Soc., 136, 107124, https://doi.org/10.1002/qj.469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milstein, A. B., and W. J. Blackwell, 2016: Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. J. Geophys. Res. Atmos., 121, 14141430, https://doi.org/10.1002/2015JD024008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the pre-storm environment of intense West African convective systems. Mon. Wea. Rev., 138, 37213739, https://doi.org/10.1175/2010MWR3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson and E. O. Odada, Eds., CRC Press, 25–56.

    • Crossref
    • Export Citation
  • Nicholson, S. E., 2011: Dryland Climatology. Cambridge University Press, 516 pp.

    • Crossref
    • Export Citation
  • Office of the Federal Coordinator of Meteorology, 1997: Rawinsonde and pibal observations. National Oceanographic and Atmospheric Administration Rep. FCM-H3-1997, 191 pp.

  • Parker, D. J., and Coauthors, 2005: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, https://doi.org/10.1256/qj.04.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, https://doi.org/10.1109/TGRS.2002.808319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., R. B. Wilhelmson, L. J. Wicker, and C. L. Ziegler, 2004: Numerical simulation of the interaction between the dryline and horizontal convective rolls. Mon. Wea. Rev., 132, 17921812, https://doi.org/10.1175/1520-0493(2004)132<1792:NSOTIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, M. J., and T. N. Carlson, 1981: Saharan air outbreaks over the tropical North Atlantic. Pure Appl. Geophys., 119, 677691, https://doi.org/10.1007/BF00878167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., P. Groenemeijer, D. Rýva, and M. Kolář, 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Wea. Rev., 143, 48054821, https://doi.org/10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., 2017: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30, 66616682, https://doi.org/10.1175/JCLI-D-16-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., E. L. McGrath-Spangler, W. McCarty, D. Holdaway, and R. Gelaro, 2018: Impact of adaptively thinned AIRS cloud-cleared radiances on tropical cyclone representation in a global data assimilation and forecast system. Wea. Forecasting, 33, 909931, https://doi.org/10.1175/WAF-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, A. J., J. H. Marsham, and P. Knippertz, 2015: Disagreements in low-level moisture between (re)analyses over summertime West Africa. Mon. Wea. Rev., 143, 11931211, https://doi.org/10.1175/MWR-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., J.-P. Lafore, C. Piriou, and J.-L. Redelsperger, 2005: Extratropical dry-air intrusions into the West African monsoon midtroposphere: An important factor for the convective activity over the Sahel. J. Atmos. Sci., 62, 390407, https://doi.org/10.1175/JAS-3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the premonsoon season of South Asia. J. Hydrometeor., 12, 157180, https://doi.org/10.1175/2010JHM1311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: The life cycle of the dryline. J. Appl. Meteor., 13, 444449, https://doi.org/10.1175/1520-0450(1974)013<0444:TLCOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., A. G. Feofilov, S. E. Protopapadaki, and R. Armante, 2017: Cloud climatologies from the infrared sounders AIRS and IASI: Strengths and applications. Atmos. Chem. Phys., 17, 13 62513 644, https://doi.org/10.5194/acp-17-13625-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. Blaisdell, and L. Iredell, 2012: Significant advances in the AIRS Science Team version-6 retrieval algorithm. Proc. SPIE, 8510, 85100U, https://doi.org/10.1117/12.929953.

    • Crossref
    • Export Citation
  • Susskind, J., J. Blaisdell, and L. Iredell, 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The Atmospheric Infrared Sounder Science Team version-6 retrieval algorithm. J. Appl. Remote Sens., 8, 084994, https://doi.org/10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2014: Convection and precipitation under various stability and shear conditions: Squall lines in tropical versus midlatitude environment. Atmos. Res., 142, 111123, https://doi.org/10.1016/j.atmosres.2013.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud, 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, https://doi.org/10.1175/MWR-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergados, P., A. J. Mannucci, C. O. Ao, O. Verkhoglyadova, and B. Iijima, 2018: Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data. Atmos. Meas. Tech., 11, 11931206, https://doi.org/10.5194/amt-11-1193-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2009: A mechanism for African monsoon breaks: Mediterranean cold air surges. J. Geophys. Res., 114, D01104, https://doi.org/10.1029/2008JD010654.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook 2018: Mesoscale convective systems and nocturnal rainfall over the West African Sahel: Role of the inter-tropical front. Climate Dyn., 50, 587614, https://doi.org/10.1007/s00382-017-3628-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahab, M. A., M. El-Metwally, R. Hassan, M. Lefèvre, A. Oumbe, and L. Wald, 2010: Assessing surface solar irradiance and its long-term variations in the northern Africa desert climate using Meteosat images. Int. J. Remote Sens., 31, 261280, https://doi.org/10.1080/01431160902882645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2012: Impact of imposed drying on deep convection in a cloud-resolving model. J. Geophys. Res., 117, D02112, https://doi.org/10.1029/2011JD016847.

    • Crossref
    • Export Citation
  • Warner, T. T., 2004: Desert Meteorology. Cambridge University Press, 595 pp.

    • Crossref
    • Export Citation
  • Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 8068, https://doi.org/10.1029/2002RS002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamane, Y., T. Hayashi, M. Kiguchi, F. Akter, and A. M. Dewan, 2013: Synoptic situations of severe local convective storms during the pre-monsoon season in Bangladesh. Int. J. Climatol., 33, 725734, https://doi.org/10.1002/joc.3460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Pennington, 2004: African dry air outbreaks. J. Geophys. Res., 109, D20108, https://doi.org/10.1029/2003JD003978.

  • Zuluaga, M. D., and R. A. Houze Jr., 2015: Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298316, https://doi.org/10.1175/MWR-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 82 13
PDF Downloads 262 41 9