Comparison of Oceanic Multisatellite Precipitation Data from Tropical Rainfall Measurement Mission and Global Precipitation Measurement Mission Datasets with Rain Gauge Data from Ocean Buoys

Qiaoyan Wu State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang Province, and Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Qiaoyan Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2479-2888
and
Yilei Wang State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang Province, China

Search for other papers by Yilei Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three satellite-derived precipitation datasets [the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) dataset, the NOAA Climate Prediction Center morphing technique (CMORPH) dataset, and the newly available Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) dataset] are compared with data obtained from 55 rain gauges mounted on floating buoys in the tropics for the period 1 April 2014–30 April 2017. All three satellite datasets underestimate low rainfall and overestimate high rainfall in the tropical Pacific Ocean, but the TMPA dataset does this the most. In the high-rainfall (higher than 4 mm day−1) Atlantic region, all three satellite datasets overestimate low rainfall and underestimate high rainfall, but the IMERG dataset does this the most. For the Indian Ocean, all three rainfall satellite datasets overestimate rainfall at some gauges and underestimate it at others. Of these three satellite products, IMERG is the most accurate in estimating mean precipitation over the tropical Pacific and Indian Oceans, but it is less accurate over the tropical Atlantic Ocean for regions of high rainfall. The differences between the three satellite datasets vary by region and there is a need to consider uncertainties in the data before using them for research.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qiaoyan Wu, qwu@sio.org.cn

Abstract

Three satellite-derived precipitation datasets [the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) dataset, the NOAA Climate Prediction Center morphing technique (CMORPH) dataset, and the newly available Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) dataset] are compared with data obtained from 55 rain gauges mounted on floating buoys in the tropics for the period 1 April 2014–30 April 2017. All three satellite datasets underestimate low rainfall and overestimate high rainfall in the tropical Pacific Ocean, but the TMPA dataset does this the most. In the high-rainfall (higher than 4 mm day−1) Atlantic region, all three satellite datasets overestimate low rainfall and underestimate high rainfall, but the IMERG dataset does this the most. For the Indian Ocean, all three rainfall satellite datasets overestimate rainfall at some gauges and underestimate it at others. Of these three satellite products, IMERG is the most accurate in estimating mean precipitation over the tropical Pacific and Indian Oceans, but it is less accurate over the tropical Atlantic Ocean for regions of high rainfall. The differences between the three satellite datasets vary by region and there is a need to consider uncertainties in the data before using them for research.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qiaoyan Wu, qwu@sio.org.cn
Save
  • Bentamy, A., and D. C. Fillon, 2012: Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens., 33, 17291754, https://doi.org/10.1080/01431161.2011.600348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190, https://doi.org/10.1175/JCLI3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., A. B. Phillips, and G. R. North, 2003: Comparison of TRMM rainfall retrievals with rain gauge data from the TAO/TRITON buoy array. Geophys. Res. Lett., 30, 1757, https://doi.org/10.1029/2003GL017552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of oceanic precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48, 13351344, https://doi.org/10.1175/2009JAMC2149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burdanowitz, J., C. Klepp, S. Bakan, and S. A. Buehler, 2017: Simulation of ship-track versus satellite-sensor differences in oceanic precipitation using an island-based radar. Remote Sens., 9, 593, https://doi.org/10.3390/rs9060593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., L. J. Mangum, J. Picaut, A. Sumi, and K. Takeuchi, 1991: TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72, 339347, https://doi.org/10.1175/1520-0477(1991)072<0339:TTAMAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., X. Gao, S. Sorooshian, and V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multisatellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer-Verlag, 3–22.

    • Crossref
    • Export Citation
  • Huffman, G. J., and Coauthors, 2015: The Climate Data Guide: TRMM: Tropical Rainfall Measuring Mission. NCAR, https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.

  • Huffman, G. J., and Coauthors, 2017a: NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 5.1, 34 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2017b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 54 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_technical_doc_3_22_17.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and E. F. Stocker, 2017c: V05 IMERG Early and Late Run release notes. NASA/GSFC, 2 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_EarlyLateRun_V05_release_notes-rev.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, E. F. Stocker, and J. Tan, 2017d: V05 IMERG Final Run release notes. NASA/GSFC, 8 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_V05_release_notes-rev3.pdf.

  • Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112130, https://doi.org/10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, https://doi.org/10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, https://doi.org/10.1029/97JC02906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murali Krishna, U. V., S. K. Das, S. M. Deshpande, S. L. Doiphode, and G. Pandithurai, 2017: The Assessment of Global Precipitation Measurement estimates over the Indian Subcontinent. Earth Space Sci., 4, 540553, https://doi.org/10.1002/2017EA000285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., and R. M. Gairola, 2014: Validation of TRMM-3B42 precipitation product over the tropical Indian Ocean using rain gauge data from the RAMA buoy array. Theor. Appl. Climatol., 115, 451460, https://doi.org/10.1007/s00704-013-0903-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., C. Mahesh, and R. M. Gairola, 2013: Comparison of TRMM Multi-satellite Precipitation Analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys. Remote Sens. Lett., 4, 677685, https://doi.org/10.1080/2150704X.2013.783248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., M. R. Kumar, S. Mathew, and R. Venkatesan, 2018: How accurate are satellite estimates of precipitation over the north Indian Ocean? Theor. Appl. Climatol., 134, 467475, https://doi.org/10.1007/s00704-017-2287-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., Z. Chen, Y. Shen, S. Zhang, and R. Shi, 2014: Evaluation of satellite rainfall estimates over the Chinese mainland. Remote Sens., 6, 11 64911 672, https://doi.org/10.3390/rs61111649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, https://doi.org/10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor., 42, 10451059, https://doi.org/10.1175/1520-0450(2003)042<1045:MTASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2004: In situ observations of diurnal variability in rainfall over the tropical Pacific and Atlantic Oceans. J. Climate, 17, 34963509, https://doi.org/10.1175/1520-0442(2004)017<3496:ISOODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., P. A’Hearn, H. P. Freitag, and M. J. McPhaden, 2001: ATLAS self-siphoning rain gauge error estimates. J. Atmos. Oceanic Technol., 18, 19892002, https://doi.org/10.1175/1520-0426(2001)018<1989:ASSRGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016: Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, https://doi.org/10.1016/j.jhydrol.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., E. A. Smith, and R. A. Houze Jr., 2007: The Fourth TRMM Latent Heating Workshop. Bull. Amer. Meteor. Soc., 88, 12551259, https://doi.org/10.1175/BAMS-88-8-1245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., G. Tang, Z. Han, X. Guo, and Y. Hong, 2018: Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol., 564, 342356, https://doi.org/10.1016/j.jhydrol.2018.06.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., J. Chen, and X. Wang, 2017: Comparison of IMERG Level-3 and TMPA 3B42V7 in estimating typhoon-related heavy rain. Water, 9, 276, https://doi.org/10.3390/w9040276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 857 131 14
PDF Downloads 706 133 15