Physical Evaluation of GPM DPR Single- and Dual-Wavelength Algorithms

Liang Liao Goddard Earth Science Technology and Research, Morgan State University, Greenbelt, Maryland

Search for other papers by Liang Liao in
Current site
Google Scholar
PubMed
Close
and
Robert Meneghini NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A physical evaluation of the rain profiling retrieval algorithms for the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory satellite is carried out by applying them to the hydrometeor profiles generated from measured raindrop size distributions (DSD). The DSD-simulated radar profiles are used as input to the algorithms, and their estimates of hydrometeors’ parameters are compared with the same quantities derived directly from the DSD data (or truth). The retrieval accuracy is assessed by the degree to which the estimates agree with the truth. To check the validity and robustness of the retrievals, the profiles are constructed for cases ranging from fully correlated (or uniform) to totally uncorrelated DSDs along the columns. Investigation into the sensitivity of the retrieval results to the model assumptions is made to characterize retrieval uncertainties and identify error sources. Comparisons between the single- and dual-wavelength algorithm performance are carried out with either a single- or dual-wavelength constraint of the path integral or differential path integral attenuation. The results suggest that the DPR dual-wavelength algorithm generally provides accurate range-profiled estimates of rainfall rate and mass-weighted diameter with the dual-wavelength estimates superior in accuracy to those from the single-wavelength retrievals.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Liang Liao, liang.liao-1@ nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

A physical evaluation of the rain profiling retrieval algorithms for the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory satellite is carried out by applying them to the hydrometeor profiles generated from measured raindrop size distributions (DSD). The DSD-simulated radar profiles are used as input to the algorithms, and their estimates of hydrometeors’ parameters are compared with the same quantities derived directly from the DSD data (or truth). The retrieval accuracy is assessed by the degree to which the estimates agree with the truth. To check the validity and robustness of the retrievals, the profiles are constructed for cases ranging from fully correlated (or uniform) to totally uncorrelated DSDs along the columns. Investigation into the sensitivity of the retrieval results to the model assumptions is made to characterize retrieval uncertainties and identify error sources. Comparisons between the single- and dual-wavelength algorithm performance are carried out with either a single- or dual-wavelength constraint of the path integral or differential path integral attenuation. The results suggest that the DPR dual-wavelength algorithm generally provides accurate range-profiled estimates of rainfall rate and mass-weighted diameter with the dual-wavelength estimates superior in accuracy to those from the single-wavelength retrievals.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Liang Liao, liang.liao-1@ nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Adirosi, E., L. Baldini, N. Roberto, P. Gatlin, and A. Tokay. 2016: Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements. Atmos. Res., 169, 404415, https://doi.org/10.1016/j.atmosres.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 664 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a Gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Oceanic and Atmos. Tech., 19, 633645, https://doi.org/10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., W. Li, and B. Zafar, 2005: Estimation of raindrop size distribution from spaceborne radar observations. IEEE Trans. Geosci. Remote Sens., 43, 10781086, https://doi.org/10.1109/TGRS.2005.846130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Appl. Meteor., 25, 13461363, https://doi.org/10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 34063413, https://doi.org/10.1175/1520-0469(2000)057<3406:MOMRSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, https://doi.org/10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., L. Tian, W. S. Olson, and S. Tanelli, 2011: A robust dual frequency radar profiling algorithm. J. Appl. Meteor. Climatol., 50, 15431557, https://doi.org/10.1175/2011JAMC2655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516, https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, https://doi.org/10.2151/jmsj.87A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., T. Iguchi, T. Shimomai, and N. Kashiwagi, 2009: Raindrop size distribution modeling from a statistical rain parameter relation and its application to the TRMM precipitation radar rain retrieval algorithm. J. Appl. Meteor. Climatol., 48, 716724, https://doi.org/10.1175/2008JAMC1998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005: A study of air/space-borne dual-wavelength radar for estimates of rain profiles. Adv. Atmos. Sci., 22, 841851, https://doi.org/10.1007/BF02918684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009a: Validation of TRMM Precipitation Radar through Comparison of its multiyear measurements with ground-based radar. J. Atmos. Oceanic Technol., 48, 804817, https://doi.org/10.1175/2008JAMC1974.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2009b: Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, https://doi.org/10.2151/jmsj.87A.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2019: A modified dual-wavelength technique for Ku- and Ka-band radar rain retrieval. J. Appl. Meteor. Climatol., 58, 318, https://doi.org/10.1175/JAMC-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, https://doi.org/10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow properties for Ku- and Ka-band dual-frequency radar. J. Appl. Meteor. Climatol., 55, 18451858, https://doi.org/10.1175/JAMC-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mardiana, R., T. Iguchi, and N. Takahashi, 2004: A dual-frequency rain profiling method without the use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42, 22142225, https://doi.org/10.1109/TGRS.2004.834647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., J. Eckerman, and D. Atlas, 1983: Determination of rain rate from a spaceborne radar using measurements of total attenuation. IEEE Trans. Geosci. Remote Sens., GE-21, 3443, https://doi.org/10.1109/TGRS.1983.350528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Kozu, H. Kumagai, and W. C. Boncyk, 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9, 364382, https://doi.org/10.1175/1520-0426(1992)009<0364:ASOREM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., H. Kumagai, J. R. Wang, T. Iguchi, and T. Kozu, 1997: Microphysical retrievals over stratiform rain using measurements from an airborne dual-wavelength radar radiometer. IEEE Trans. Geosci. Remote Sens., 35, 487506, https://doi.org/10.1109/36.581956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., H. Kim, L. Liao, J. A. Jones, and J. M. Kwiatkowski, 2015: An initial assessment of the Surface Reference Technique applied to data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite. J. Atmos. Oceanic Technol., 32, 22812296, https://doi.org/10.1175/JTECH-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., L. Liao, T. Iguchi, and H. Kim, 2018: Hybrid estimates of path attenuation for the DPR. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, IEEE, 8327–8330, https://doi.org/10.1109/IGARSS.2018.8518017.

    • Crossref
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotation symmetric scatterers. J. Quan. Spec. Rad. Transfer, 60, 309324, https://doi.org/10.1016/S0022-4073(98)00008-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, C. R., and V. Chandrasekar, 2005: A system approach to GPM dual-frequency retrieval. IEEE Trans. Geosci. Remote Sens., 43, 18161826, https://doi.org/10.1109/TGRS.2005.851165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., and K. R. Morris, 2011: A ground validation network for the Global Precipitation Measurement mission. J. Atmos. Oceanic Technol., 28, 301319, https://doi.org/10.1175/2010JTECHA1403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., and T. Iguchi, 2015: Intercomparison of attenuation correction methods for the GPM dual-frequency precipitation radar. J. Atmos. Oceanic Technol., 32, 915926, https://doi.org/10.1175/JTECH-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Shimozuma, T. Iguchi, and T. Kozu, 2016: Spatial and temporal variations of mass-weighted mean diameter estimated by GPM/DPR. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, IEEE, 3938–3940, https://doi.org/10.1109/IGARSS.2016.7730023.

    • Crossref
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, https://doi.org/10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteor. Climatol., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, https://doi.org/10.1175/JTECH1700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4041 2821 208
PDF Downloads 955 138 4