Resonance Scattering Detection Using the CSU–CHILL Dual-Wavelength, Dual-Polarization Radar

Francesc Junyent Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Francesc Junyent in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
, and
P. Kennedy Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by P. Kennedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The CSU–CHILL radar is a dual-wavelength, dual-polarization weather radar system operating at S and X band with coaxial beams. This radar system offers a unique environment to develop and/or validate algorithms that cut across its wavelengths and polarizations. This paper presents a method to retrieve resonance scattering regions from the difference in intrinsic reflectivities after attenuation correction, which is performed using measured reflectivity fields only. The algorithm to retrieve these regions dominated by non-Rayleigh scattering is applied to different storm events, and the obtained data field capturing the difference in S- and X-band reflectivities due to resonance effects (which we will call Mie signal for convenience) is compared to the collocated dual-polarization fields. The obtained Mie signal is also compared to hail reports. In both cases, the retrieved Mie signal is found to be consistent with the rest of the dual-polarization data fields, and in some situations, it is shown to bring information not directly discernible from the usual dual-polarization radar variables.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francesc Junyent, francesc@engr.colostate.edu

Abstract

The CSU–CHILL radar is a dual-wavelength, dual-polarization weather radar system operating at S and X band with coaxial beams. This radar system offers a unique environment to develop and/or validate algorithms that cut across its wavelengths and polarizations. This paper presents a method to retrieve resonance scattering regions from the difference in intrinsic reflectivities after attenuation correction, which is performed using measured reflectivity fields only. The algorithm to retrieve these regions dominated by non-Rayleigh scattering is applied to different storm events, and the obtained data field capturing the difference in S- and X-band reflectivities due to resonance effects (which we will call Mie signal for convenience) is compared to the collocated dual-polarization fields. The obtained Mie signal is also compared to hail reports. In both cases, the retrieved Mie signal is found to be consistent with the rest of the dual-polarization data fields, and in some situations, it is shown to bring information not directly discernible from the usual dual-polarization radar variables.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francesc Junyent, francesc@engr.colostate.edu
Save
  • Atlas, D., and F. Ludlam, 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 87, 523534, https://doi.org/10.1002/qj.49708737407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens., 28, 412422, https://doi.org/10.1109/TGRS.1990.572906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., V. Giridhar, and Y. Zhao, 1991: Polarimetric C-band radar observables in melting hail: A computational study. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 23.9.

  • Balakrishnan, N., and D. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D., R. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, https://doi.org/10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., J. Vivekanandan, and J. Tuttle, 1986a: Multiparameter radar measurements in Colorado convective storms. Part I: Hail detection studies. J. Atmos. Sci., 43, 25452563, https://doi.org/10.1175/1520-0469(1986)043<2545:MRMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., R. Rasmussen, and J. Vivekanandan, 1986b: Multiparameter radar measurements in Colorado convective storms. Part II: Graupel melting studies. J. Atmos. Sci., 43, 25642577, https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915, https://doi.org/10.1109/36.951081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunkow, D., V. Bringi, P. Kennedy, S. Rutledge, V. Chandrasekar, E. Mueller, and R. Bowie, 2000: A description of the CSU–CHILL national radar facility. J. Atmos. Oceanic Technol., 17, 15961608, https://doi.org/10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., D. Atlas, P. Eccles, R. Fetter, and E. Mueller, 1973: Dual-wavelength radar hail detection. Bull. Amer. Meteor. Soc., 54, 921924, https://doi.org/10.1175/1520-0477(1973)054<0921:DWRHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. Rutledge, D. Ahijevych, and T. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, J., and D. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528, https://doi.org/10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delrieu, G., S. Caoudal, and J. Creutin, 1997: Feasibility of using mountain return for the correction of ground-based X-band weather data. J. Atmos. Oceanic Technol., 14, 368385, https://doi.org/10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Dover Publications, 562 pp.

  • Eccles, P., and E. Mueller, 1971: X-band attenuation and liquid water content estimation by a dual-wavelength radar. J. Appl. Meteor., 10, 12521259, https://doi.org/10.1175/1520-0450(1971)010<1252:XBAALW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eccles, P., and D. Atlas, 1973: A dual-wavelength radar hail detector. J. Appl. Meteor., 12, 847854, https://doi.org/10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, S., and J. Vivekanandan, 2010: Water vapor estimates using simultaneous dual wavelength radar observations. Radio Sci., 45, RS5002, https://doi.org/10.1029/2009RS004280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., H. Sauvageot, and A. Illingworth, 2003: Cloud liquid water and ice content retrieved by multiwavelength radar. J. Atmos. Oceanic Technol., 20, 12641275, https://doi.org/10.1175/1520-0426(2003)020<1264:CLWAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor. Climatol., 50, 3958, https://doi.org/10.1175/2010JAMC2258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A., and R. Srivastava, 1978: Dual-wavelength Doppler radar observations of hail at vertical incidence. J. Appl. Meteor., 17, 16941703, https://doi.org/10.1175/1520-0450(1978)017<1694:DWDROO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A., and A. Heymsfield, 1980: Hail growth mechanisms in a Colorado hailstorm. Part I: Dual-wavelength radar observations. J. Atmos. Sci., 37, 17631778, https://doi.org/10.1175/1520-0469(1980)037<1763:HGMIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., and V. Chandrasekar, 2016: An examination of precipitation using CSU–CHILL dual-wavelength, dual-polarization radar observations. J. Atmos. Oceanic Technol., 33, 313329, https://doi.org/10.1175/JTECH-D-14-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, V. Bringi, S. Rutledge, P. Kennedy, D. Brunkow, J. George, and R. Bowie, 2015: Transformation of the CSU–CHILL radar facility to a dual-frequency, dual-polarization Doppler system. Bull. Amer. Meteor. Soc., 96, 975996, https://doi.org/10.1175/BAMS-D-13-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. V. Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, N., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Climate Appl. Meteor., 25, 19561958, https://doi.org/10.1175/1520-0450(1986)025<1956:HSFAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M., and A. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain problems in least squares. Quart. Appl. Math., 2, 164168, https://doi.org/10.1090/qam/10666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., O. Pujol, H. Sauvageot, and J. Riedi, 2014: The dual-wavelength method for hailstorm detection by airborne radar. IEEE Trans. Geosci. Remote Sens., 52, 73277335, https://doi.org/10.1109/TGRS.2014.2311316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquardt, D., 1963: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431441, https://doi.org/10.1137/0111030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L., J. Tuttle, and C. Knight, 1988: Airflow and hail growth in a severe northern High Plains supercell. Mon. Wea. Rev., 45, 736762, https://doi.org/10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Musil, D., A. Heymsfield, and P. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 10371051, https://doi.org/10.1175/1520-0450(1986)025<1037:MCOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., M. Maki, K. Iwanami, V. Bringi, and V. Chandrasekar, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, https://doi.org/10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and A. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R., and J. Tuttle, 1982: Antenna beam patterns and dual-wavelength processing. J. Appl. Meteor., 21, 18651880, https://doi.org/10.1175/1520-0450(1982)021<1865:ABPADW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Hudak, and J. Scott, 2006: A new polarimetric scheme for attenuation correction at C band. Fourth European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, Center of Applied Research in Hydrometeorology, 29–32.

  • Ryzhkov, A., P. Zhang, D. Hudak, J. Alford, M. Knight, and J. Conway, 2007: Validation of polarimetric methods for attenuation correction at C band. 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P11B.12, https://ams.confex.com/ams/33Radar/techprogram/paper_123122.htm.

  • Ryzhkov, A., M. Kumjian, S. Ganson, and A. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Kumjian, S. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. L. Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R., D. Wheatley, N. Atkins, R. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, and P. Kollias, 2013: Disentangling Mie and attenuation effects in rain using a Ka-W dual-wavelength Doppler spectral ratio technique. Geophys. Res. Lett., 40, 55485552, https://doi.org/10.1002/2013GL057454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, E. Luke, and P. Kollias, 2017: Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case study. Quart. J. Roy. Meteor. Soc., 143, 13641380, https://doi.org/10.1002/qj.3010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J., and R. Rinehart, 1983: Attenuation correction in dual-wavelength analyses. J. Climate Appl. Meteor., 22, 19141921, https://doi.org/10.1175/1520-0450(1983)022<1914:ACIDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J., V. Bringi, H. Orville, and F. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. Bringi, and R. Raghavan, 1990: Multiparameter radar modeling and observations of melting ice. J. Atmos. Sci., 47, 549564, https://doi.org/10.1175/1520-0469(1990)047<0549:MRMAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 407 118 3
PDF Downloads 396 115 1