X-Band Dual-Polarization Radar Observations of Snow Growth Processes of a Severe Winter Storm: Case of 12 December 2013 in South Korea

S. Allabakash Korea Institute of Civil Engineering and Building Technology, Ilsan, South Korea

Search for other papers by S. Allabakash in
Current site
Google Scholar
PubMed
Close
,
S. Lim Korea Institute of Civil Engineering and Building Technology, Ilsan, South Korea

Search for other papers by S. Lim in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
,
K. H. Min Kyungpook National University, Daegu, South Korea

Search for other papers by K. H. Min in
Current site
Google Scholar
PubMed
Close
,
J. Choi Chosun College of Science and Technology, Gwangju, South Korea

Search for other papers by J. Choi in
Current site
Google Scholar
PubMed
Close
, and
B. Jang Korea Institute of Civil Engineering and Building Technology, Ilsan, South Korea

Search for other papers by B. Jang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics of microphysical processes of a severe winter storm that occurred on the Korean Peninsula on 12 December 2013 was studied in this work for the first time via X-band dual-polarization weather radar observations. A new range–height indicator (RHI) scan-based quasi-vertical profile methodology, in which polarimetric radar variables were averaged at each height of the RHI scan, was introduced to investigate the snow microphysics, and the obtained polarimetric radar signatures served as fingerprints of the dendritic growth, aggregation, and riming processes. Enhanced differential reflectivity (Zdr) and specific differential phase shift (Kdp) bands were detected near the −15°C isotherm, which signified the growth of dendrites or platelike crystals. The observed correlation between the increases in the reflectivity factor at horizontal polarization Zh and copolar correlation coefficient ρhv and the decreases in Zdr and Kdp magnitudes at lower heights suggested the occurrence of the aggregation process. The combination of high Zh and low Zdr values with turbulent atmospheric conditions observed at the ground level indicated the occurrence of the riming process. In addition, the negative Kdp and Zdr values combined with high Zh and ρhv magnitudes (observed near the end of the snow event) indicated the formation of graupel particles. The polarimetric radar signatures obtained for the snow growth processes were evident from ground observations and agreed well with the results of the Weather Research and Forecasting Model and Modern-Era Retrospective Analysis for Research and Applications data. Furthermore, the spatial variability of Zh methodology was implemented to describe both aggregates and rimed ice particles.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Lim, slim@kict.re.kr

Abstract

The characteristics of microphysical processes of a severe winter storm that occurred on the Korean Peninsula on 12 December 2013 was studied in this work for the first time via X-band dual-polarization weather radar observations. A new range–height indicator (RHI) scan-based quasi-vertical profile methodology, in which polarimetric radar variables were averaged at each height of the RHI scan, was introduced to investigate the snow microphysics, and the obtained polarimetric radar signatures served as fingerprints of the dendritic growth, aggregation, and riming processes. Enhanced differential reflectivity (Zdr) and specific differential phase shift (Kdp) bands were detected near the −15°C isotherm, which signified the growth of dendrites or platelike crystals. The observed correlation between the increases in the reflectivity factor at horizontal polarization Zh and copolar correlation coefficient ρhv and the decreases in Zdr and Kdp magnitudes at lower heights suggested the occurrence of the aggregation process. The combination of high Zh and low Zdr values with turbulent atmospheric conditions observed at the ground level indicated the occurrence of the riming process. In addition, the negative Kdp and Zdr values combined with high Zh and ρhv magnitudes (observed near the end of the snow event) indicated the formation of graupel particles. The polarimetric radar signatures obtained for the snow growth processes were evident from ground observations and agreed well with the results of the Weather Research and Forecasting Model and Modern-Era Retrospective Analysis for Research and Applications data. Furthermore, the spatial variability of Zh methodology was implemented to describe both aggregates and rimed ice particles.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Lim, slim@kict.re.kr
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 18871892, https://doi.org/10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., P. C. Kennedy, G. J. Huang, C. Kleinkort, M. Thurai, and B. M. Notaroš, 2017: Dual-polarized radar and surface observations of a winter graupel shower with negative Zdr column. J. Appl. Meteor. Climatol., 56, 455470, https://doi.org/10.1175/JAMC-D-16-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., S. Lim, V. Chandrasekar, and B. J. Jang, 2017: Urban hydrological applications of dual-polarization X-band radar: Case study in Korea. J. Hydrol. Eng., 22, E5016001, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, and B. Kosovic, 2018: The impact of boundary layer turbulence on snow growth and precipitation: Idealized large eddy simulations. Atmos. Res., 204, 5466, https://doi.org/10.1016/j.atmosres.2018.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evaristo, R., T. Bals-Elsholz, E. Williams, A. J. Fenn, M. Donovan, and D. Smalley, 2013: Relationship of graupel shape to differential reflectivity: Theory and observations. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 14, https://ams.confex.com/ams/93Annual/webprogram/Paper214462.html.

  • Garrett, T. J., E. H. Bair, C. J. Fallgatter, K. Shkurko, R. E. Davis, and D. Howlett, 2012: The multi-angle snowflake camera. Proc. Int. Snow Science Workshop, Anchorage, AK, International Snow Science Workshop, 930933, http://arc.lib.montana.edu/snow-science/item/1672.

  • Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13 78713 802, https://doi.org/10.5194/acp-15-13787-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, https://doi.org/10.1175/WAF-D-14-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. Academic Press, 573 pp.

  • Juga, I., M. Hippi, D. Moisseev, and E. Saltikoff, 2012: Analysis of weather factors responsible for the traffic “Black Day” in Helsinki, Finland, on 17 March 2005. Meteor. Appl., 19, 19, https://doi.org/10.1002/met.238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1973: Conical graupel. J. Atmos. Sci., 30, 118124, https://doi.org/10.1175/1520-0469(1973)030<0118:CG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouketsu, T., and Coauthors, 2015: A hydrometeor classification method for X-band polarimetric radar: Construction and validation focusing on solid hydrometeors under moist environments. J. Atmos. Oceanic Technol., 32, 20522074, https://doi.org/10.1175/JTECH-D-14-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., D. Moisseev, V. Chandrasekar, and D. R. Lee, 2013: Classification and quantification of snow based on spatial variability of radar reflectivity. J. Meteor. Soc. Japan, 91, 763774, https://doi.org/10.2151/jmsj.2013-603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2, 321335.

  • Michimoto, K., 1991: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku District. Part I: Observation and analysis of thunderclouds in summer and winter. J. Meteor. Soc. Japan, 69, 327335, https://doi.org/10.2151/jmsj1965.69.3_327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, K. H., S. Choo, D. Lee, and G. Lee, 2015: Evaluation of WRF cloud microphysics schemes using radar observations. Wea. Forecasting, 30, 15711589, https://doi.org/10.1175/WAF-D-14-00095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., E. Saltikoff, and M. Leskinen, 2009: Dual-polarization weather radar observations of snow growth processes. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 13B.2, http://ams.confex.com/ams/pdfpapers/156123.pdf.

  • Moisseev, D., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos., 120, 12 64412 655, https://doi.org/10.1002/2015JD023884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, J. Verlinde, K. Aydin, and E. E. Clothiaux, 2015: Linear depolarization ratios of columnar ice crystals in a deep precipitating system over the Arctic observed by zenith-pointing Ka-band Doppler radar. J. Appl. Meteor. Climatol., 54, 10601068, https://doi.org/10.1175/JAMC-D-15-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403424, https://doi.org/10.1175/JAMC-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarchilli, G., V. Gorgucci, V. Chandrasekar, and A. Dobaie, 1996: Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34, 2226, https://doi.org/10.1109/36.481887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, https://doi.org/10.1175/JAMC-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-distrometer. Precipitation: Advances in Measurement, Estimation and Prediction, Springer, 3–31.

    • Crossref
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J., F. Fabry, and I. Zawadzki, 2015: Attempts to observe polarimetric signatures of riming in stratiform precipitation. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 6B.6, https://ams.confex.com/ams/37RADAR/webprogram/Paper275246.html.

  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Elsevier, 504 pp.

  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 894 280 27
PDF Downloads 882 231 20