Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers

Andrew K. Heidinger NOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin

Search for other papers by Andrew K. Heidinger in
Current site
Google Scholar
PubMed
Close
,
Nicholas Bearson Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Nicholas Bearson in
Current site
Google Scholar
PubMed
Close
,
Michael J. Foster Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Michael J. Foster in
Current site
Google Scholar
PubMed
Close
,
Yue Li Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yue Li in
Current site
Google Scholar
PubMed
Close
,
Steve Wanzong Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Steve Wanzong in
Current site
Google Scholar
PubMed
Close
,
Steven Ackerman Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Steven Ackerman in
Current site
Google Scholar
PubMed
Close
,
Robert E. Holz Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Robert E. Holz in
Current site
Google Scholar
PubMed
Close
,
Steven Platnick NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Platnick in
Current site
Google Scholar
PubMed
Close
, and
Kerry Meyer NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kerry Meyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Modern polar-orbiting meteorological satellites provide both imaging and sounding observations simultaneously. Most imagers, however, do not have H2O and CO2 absorption bands and therefore struggle to accurately estimate the height of optically thin cirrus clouds. Sounders provide these needed observations, but at a spatial resolution that is too coarse to resolve many important cloud structures. This paper presents a technique to merge sounder and imager observations with the goal of maintaining the details offered by the imager’s high spatial resolution and the accuracy offered by the sounder’s spectral information. The technique involves deriving cloud temperatures from the sounder observations, interpolating the sounder temperatures to the imager pixels, and using the sounder temperatures as an additional constraint in the imager cloud height optimal estimation approach. This technique is demonstrated using collocated VIIRS and Cross-track Infrared Sounder (CrIS) observations with the impact of the sounder observations validated using coincident CALIPSO/CALIOP cloud heights These comparisons show significant improvement in the cloud heights for optically thin cirrus. The technique should be generally applicable to other imager/sounder pairs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Heidinger, andrew.heidinger@noaa.gov

Abstract

Modern polar-orbiting meteorological satellites provide both imaging and sounding observations simultaneously. Most imagers, however, do not have H2O and CO2 absorption bands and therefore struggle to accurately estimate the height of optically thin cirrus clouds. Sounders provide these needed observations, but at a spatial resolution that is too coarse to resolve many important cloud structures. This paper presents a technique to merge sounder and imager observations with the goal of maintaining the details offered by the imager’s high spatial resolution and the accuracy offered by the sounder’s spectral information. The technique involves deriving cloud temperatures from the sounder observations, interpolating the sounder temperatures to the imager pixels, and using the sounder temperatures as an additional constraint in the imager cloud height optimal estimation approach. This technique is demonstrated using collocated VIIRS and Cross-track Infrared Sounder (CrIS) observations with the impact of the sounder observations validated using coincident CALIPSO/CALIOP cloud heights These comparisons show significant improvement in the cloud heights for optically thin cirrus. The technique should be generally applicable to other imager/sounder pairs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Heidinger, andrew.heidinger@noaa.gov
Save
  • Borde, R., and P. Dubuisson, 2010: Sensitivity of atmospheric motion vectors height assignment methods to semitransparent cloud properties using simulated Meteosat-8 radiances. J. Appl. Meteor. Climatol., 49, 12051218, https://doi.org/10.1175/2010JAMC2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., J. M. Daniels, A. A. Bailey, and S. T. Wanzong, 2012: New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. J. Appl. Meteor. Climatol., 51, 21372151, https://doi.org/10.1175/JAMC-D-11-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cross, J., I. Gladkova, W. P. Menzel, A. Heidinger, and M. D. Grossberg, 2013: Statistical estimation of a 13.3 μm visible infrared imaging radiometer suite channel using multisensor data fusion. J. Appl. Remote Sens., 7, 073473, https://doi.org/10.1117/1.JRS.7.073473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannon, S. E., L. L. Strow, and W. W. McMillan, 1996: Atmospheric infrared fast transmittance models: A comparison of two approaches. Proc. SPIE, 2830, 94105, https://doi.org/10.1117/12.256106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2011: ABI cloud height. NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 77 pp., http://www.goes-r.gov/products/ATBDs/baseline/Cloud_CldHeight_v2.0_no_color.pdf.

  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, https://doi.org/10.1175/2008JAMC1882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res., 115, D00H20, https://doi.org/10.1029/2009JD012152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Y. Li, B. A. Baum, R. E. Holz, S. Platnick, and P. Yang, 2015: Retrieval of cirrus cloud optical depth under day and night conditions from MODIS collection 6 cloud property data. Remote Sens., 7, 72577271, https://doi.org/10.3390/rs70607257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high-spectral-resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23, 653670, https://doi.org/10.1175/JTECH1877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. Ackerman, F. W. Nagle, R. A. Frey, S. Dutcher, R. E. Kuehn, M. Vaughan, and B. A. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., A. Eldering, A. J. Braverman, E. J. Fetzer, J. H. Jiang, E. Fishbein, and D. L. Wu, 2007: Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations. J. Geophys. Res., 112, D05202, https://doi.org/10.1029/2006JD007336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor., 44, 15261543, https://doi.org/10.1175/JAM2281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., P. Yang, G. R. North, and A. Dessler, 2012: Test of the fixed anvil temperature hypothesis. J. Atmos. Sci., 69, 23172328, https://doi.org/10.1175/JAS-D-11-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends. J. Climate, 28, 48204840, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, https://doi.org/10.1175/2007JAMC1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, and B. A. Baum, 2015: Cloud top properties and cloud phase, version 11. NASA Algorithm Theoretical Basis Doc., 73 pp., https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_2.pdf.

  • Nagle, F. W., and R. E. Holz, 2009: Computationally efficient methods of collocating satellite, aircraft, and ground observations. J. Atmos. Oceanic Technol., 26, 15851595, https://doi.org/10.1175/2008JTECHA1189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., A. K. Heidinger, and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44, 804826, https://doi.org/10.1175/JAM2236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples From Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys., 14, 609624, https://doi.org/10.1029/RG014i004p00609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., W. E. Lewis, W. Bresky, D. Stettner, J. Daniels, and S. Wanzong, 2017: Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 145, 11071125, https://doi.org/10.1175/MWR-D-16-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., Z. J. Luo, and Z. Huang, 2011: Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations: Method and application to convection study. J. Geophys. Res., 116, D17201, https://doi.org/10.1029/2011JD016097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., W. P. Menzel, N. Smith, R. Frey, E. E. Borbas, and B. A. Baum, 2012: An approach for improving cirrus cloud-top pressure/height estimation by merging high-spatial-resolution infrared-window imager data with high-spectral-resolution sounder data. J. Appl. Meteor. Climatol., 51, 14771488, https://doi.org/10.1175/JAMC-D-11-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., B. A. Baum, and W. P. Menzel, 2017: Fusion of satellite-based imager and sounder data to construct supplementary high spatial resolution narrowband IR radiances. J. Appl. Remote Sens., 11, 036022, https://doi.org/10.1117/1.JRS.11.036022.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 459 117 8
PDF Downloads 416 105 9