Rainfall Estimation Accuracy of a Nationwide Instantaneously Sampling Commercial Microwave Link Network: Error Dependency on Known Characteristics

L. W. de Vos Royal Netherlands Meteorological Institute (KNMI), de Bilt, and Wageningen University and Research, Wageningen, Netherlands

Search for other papers by L. W. de Vos in
Current site
Google Scholar
PubMed
Close
,
A. Overeem Royal Netherlands Meteorological Institute (KNMI), de Bilt, and Wageningen University and Research, Wageningen, Netherlands

Search for other papers by A. Overeem in
Current site
Google Scholar
PubMed
Close
,
H. Leijnse Royal Netherlands Meteorological Institute (KNMI), de Bilt, Netherlands

Search for other papers by H. Leijnse in
Current site
Google Scholar
PubMed
Close
, and
R. Uijlenhoet Wageningen University and Research, Wageningen, Netherlands

Search for other papers by R. Uijlenhoet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Commercial microwave links are installed and maintained for the purpose of telecommunication. Hydrometeors between transmitting and receiving antennas cause the microwave signal to be attenuated. From signal attenuation, the path-averaged rainfall intensity can be calculated. A 7-month dataset of instantaneously logged signal powers from almost 2000 unique links in the Netherlands is analyzed. Rainfall intensities are calculated with the RAINLINK package with a novel preprocessing module, enabling the package to be applied on instantaneously logged data from now on. Rainfall intensities per link are validated with the path-averaged rainfall intensities according to a gauge-adjusted radar product. Both the overall performance and the dependence of errors on link characteristics and measurement conditions are evaluated. The coefficient of variation decreases from 3.70 to 2.32 and the correlation increases from 0.30 to 0.63 from instantaneous to daily estimates of rainfall accumulations. The coefficient of variation is also smaller during heavy rainfall. Errors are largest for pathlengths shorter than 2 km, for observations during the late night and early morning, and for observations during colder months (when solid or melting precipitation could occur and dew is more likely to form on the antennas). Comparison of our results with those of earlier studies shows that minimum/maximum sampling (widely employed in network management systems) outperforms instantaneous sampling regarding detection of both quantity and occurrence of rain at a 15-min sampling rate in the Dutch climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. W. de Vos, lotte.devos@wur.nl

Abstract

Commercial microwave links are installed and maintained for the purpose of telecommunication. Hydrometeors between transmitting and receiving antennas cause the microwave signal to be attenuated. From signal attenuation, the path-averaged rainfall intensity can be calculated. A 7-month dataset of instantaneously logged signal powers from almost 2000 unique links in the Netherlands is analyzed. Rainfall intensities are calculated with the RAINLINK package with a novel preprocessing module, enabling the package to be applied on instantaneously logged data from now on. Rainfall intensities per link are validated with the path-averaged rainfall intensities according to a gauge-adjusted radar product. Both the overall performance and the dependence of errors on link characteristics and measurement conditions are evaluated. The coefficient of variation decreases from 3.70 to 2.32 and the correlation increases from 0.30 to 0.63 from instantaneous to daily estimates of rainfall accumulations. The coefficient of variation is also smaller during heavy rainfall. Errors are largest for pathlengths shorter than 2 km, for observations during the late night and early morning, and for observations during colder months (when solid or melting precipitation could occur and dew is more likely to form on the antennas). Comparison of our results with those of earlier studies shows that minimum/maximum sampling (widely employed in network management systems) outperforms instantaneous sampling regarding detection of both quantity and occurrence of rain at a 15-min sampling rate in the Dutch climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: L. W. de Vos, lotte.devos@wur.nl
Save
  • Alberoni, P. P., A. Fornasiero, G. Roversi, S. Pasetti, M. Folegani, and F. Porcù, 2018: Comparison between different QPE based on: Microwave links, radar adjusted and gauges. 10th European Conf. on Radar in Meteorology and Hydrology, Ede, Netherlands, KNMI, 851–860, https://doi.org/10.18174/454537.

    • Crossref
    • Export Citation
  • Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 13221331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., and R. Uijlenhoet, 2007: Path-averaged rainfall estimation using microwave links: Uncertainty due to spatial rainfall variability. Geophys. Res. Lett., 34, L07403, https://doi.org/10.1029/2007GL029409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, J.-D. Creutin, and C. Obled, 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299, 166179, https://doi.org/10.1016/S0022-1694(04)00363-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chwala, C., and H. Kunstmann, 2019: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. Wiley Interdiscip. Rev.: Water, 6, e1337, https://doi.org/10.1002/wat2.1337.

    • Search Google Scholar
    • Export Citation
  • Chwala, C., and Coauthors, 2012: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of southern Germany. Hydrol. Earth Syst. Sci., 16, 26472661, https://doi.org/10.5194/hess-16-2647-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chwala, C., F. Keis, and H. Kunstmann, 2016: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications. Atmos. Meas. Tech., 9, 991999, https://doi.org/10.5194/amt-9-991-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doumounia, A., M. Gosset, F. Cazenave, M. Kacou, and F. Zougmore, 2014: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett., 41, 60166022, https://doi.org/10.1002/2014GL060724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenicia, F., L. Pfister, D. Kavetski, P. Matgen, J.-F. Iffly, L. Hoffmann, and R. Uijlenhoet, 2012: Microwave links for rainfall estimation in an urban environment: Insights from an experimental setup in Luxembourg-City. J. Hydrol., 464–465, 6978, https://doi.org/10.1016/j.jhydrol.2012.06.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldshtein, O., H. Messer, and A. Zinevich, 2009: Rain rate estimation using measurements from commercial telecommunications links. IEEE Trans. Signal. Process., 57, 16161625, https://doi.org/10.1109/TSP.2009.2012554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GSMA, 2012: Universal access: How mobile can bring communications to all. GSMA Rep., 55 pp., https://www.gsma.com/publicpolicy/wp-content/uploads/2012/03/universalaccessfullreport.pdf.

  • GSMA, 2016: mAgri—Weather forecasting and monitoring: Mobile solutions for climate resilience. GSMA Rep., 27 pp., https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2016/02/GSMA_mAgri_Weather_forecasting_and_monitoring_mobile_solutions_for_climate_resilience.pdf.

  • Haese, B., S. Hörning, C. Chwala, A. Bárdossy, B. Schalge, and H. Kunstmann, 2017: Stochastic reconstruction and interpolation of precipitation fields using combined information of commercial microwave links and rain gauges. Water Resour. Res., 53, 10 74010 756, https://doi.org/10.1002/2017WR021015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1991: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor., 30, 3254, https://doi.org/10.1175/1520-0450(1991)030<0032:ACOMTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-S., and B. Kwon, 2018: Rainfall detection and rainfall rate estimation using microwave attenuation. Atmosphere, 9, 287, https://doi.org/10.3390/atmos9080287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, https://doi.org/10.1029/2006WR005631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2008: Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation. Adv. Water Resour., 31, 14811493, https://doi.org/10.1016/j.advwatres.2008.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and A. Berne, 2010: Errors and uncertainties in microwave link rainfall estimation explored using drop size measurements and high-resolution radar data. J. Hydrometeor., 11, 13301344, https://doi.org/10.1175/2010JHM1243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messer, H., and O. Sendik, 2015: A new approach to precipitation monitoring: A critical survey of existing technologies and challenges. IEEE Signal Process. Mag., 32, 110122, https://doi.org/10.1109/MSP.2014.2309705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312, 713–713, https://doi.org/10.1126/science.1120034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, R. L., D. V. Rogers, and D. Hodge, 1978: The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag., 26, 318329, https://doi.org/10.1109/TAP.1978.1141845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrometzky, J., A. Eshel, P. Alpert, and H. Messer, 2017: Induced bias in attenuation measurements taken from commercial microwave links. 2017 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, New Orleans, LA, IEEE, 3744–3748, https://doi.org/10.1109/ICASSP.2017.7952856.

    • Crossref
    • Export Citation
  • Overeem, A., T. A. Buishand, and I. Holleman, 2009a: Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar. Water Resour. Res., 45, W10424, https://doi.org/10.1029/2009WR007869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., I. Holleman, and A. Buishand, 2009b: Derivation of a 10-year radar-based climatology of rainfall. J. Appl. Meteor. Climatol., 48, 14481463, https://doi.org/10.1175/2009JAMC1954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2011: Measuring urban rainfall using microwave links from commercial cellular communication networks. Water Resour. Res., 47, W12505, https://doi.org/10.1029/2010WR010350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, https://doi.org/10.1073/pnas.1217961110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2016a: Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network. Atmos. Meas. Tech., 9, 24252444, https://doi.org/10.5194/amt-9-2425-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2016b: Two and a half years of country-wide rainfall maps using radio links from commercial cellular telecommunication networks. Water Resour. Res., 52, 80398065, https://doi.org/10.1002/2016WR019412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, K., and A. Al-Mreri, 2011: A rain height model to predict fading due to wet snow on terrestrial links. Radio Sci., 46, https://doi.org/10.1029/2010RS004555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, A., A. Holt, G. Upton, and R. Cummings, 2003: Use of dual-frequency microwave links for measuring path-averaged rainfall. J. Geophys. Res., 108, 4467, https://doi.org/10.1029/2002JD003202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayitsfeld, A., R. Samuels, A. Zinevich, U. Hadar, and P. Alpert, 2012: Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system. Atmos. Res., 104–105, 119127, https://doi.org/10.1016/j.atmosres.2011.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2015: Measurement and interpolation uncertainties in rainfall maps from cellular communication networks. Hydrol. Earth Syst. Sci., 19, 35713584, https://doi.org/10.5194/hess-19-3571-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, A. M. Brasjen, J. F. Meirink, H. Leijnse, and R. Uijlenhoet, 2017: Evaluation of rainfall products derived from satellites and microwave links for the Netherlands. IEEE Trans. Geosci. Remote Sens., 55, 68496859, https://doi.org/10.1109/TGRS.2017.2735439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, T. H. Raupach, H. Leijnse, and R. Uijlenhoet, 2018: Rainfall retrieval with commercial microwave links in São Paulo, Brazil. Atmos. Meas. Tech., 11, 44654476, https://doi.org/10.5194/amt-11-4465-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., K. Aydin, S. Mathur, and J. P. Bobak, 1996: 35-GHz dual-polarization propagation link for rain-rate estimation. J. Atmos. Oceanic Technol., 13, 419425, https://doi.org/10.1175/1520-0426(1996)013<0419:GDPPLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schilling, W., 1991: Rainfall data for urban hydrology: What do we need? Atmos. Res., 27, 521, https://doi.org/10.1016/0169-8095(91)90003-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., and A. Berne, 2010: Identification of dry and rainy periods using telecommunication microwave links. IEEE Geosci. Remote Sens. Lett., 7, 611615, https://doi.org/10.1109/LGRS.2010.2043052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10, 11951199, https://doi.org/10.1109/LGRS.2012.2236074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellin, G., Ed., 2018: Ericsson microwave outlook. Ericsson Rep., 16 pp., https://www.ericsson.com/assets/local/microwave-outlook/documents/ericsson-microwave-outlook-report-2018.pdf.

  • Sohail Afzal, M., S. H. H. Shah, M. J. M. Cheema, and R. Ahmad, 2018: Real time rainfall estimation using microwave signals of cellular communication networks: A case study of Faisalabad, Pakistan. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-740.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., A. Overeem, and H. Leijnse, 2018: Opportunistic remote sensing of rainfall using microwave links from cellular communication networks. Wiley Interdiscip. Rev.: Water, 5, e1289, https://doi.org/10.1002/wat2.1289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Upton, G. J. G., A. R. Holt, R. J. Cummings, A. R. Rahimi, and J. W. F. Goddard, 2005: Microwave links: The future for urban rainfall measurement? Atmos. Res., 77, 300312, https://doi.org/10.1016/j.atmosres.2004.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valtr, P., P. Pechac, V. Kvicera, and M. Grabner, 2011: Estimation of the refractivity structure of the lower troposphere from measurements on a terrestrial multiple-receiver radio link. IEEE Trans. Antennas Propag., 59, 17071715, https://doi.org/10.1109/TAP.2011.2122234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van het Schip, T. I., A. Overeem, H. Leijnse, R. Uijlenhoet, J. F. Meirink, and A. J. van Delden, 2017: Rainfall measurement using cell phone links: Classification of wet and dry periods using geostationary satellites. Hydrol. Sci. J., 62, 13431353, https://doi.org/10.1080/02626667.2017.1329588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Leth, T. C., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2018: A measurement campaign to assess sources of error in microwave link rainfall estimation. Atmos. Meas. Tech., 11, 46454669, https://doi.org/10.5194/amt-11-4645-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. Schleiss, J. Jaffrain, A. Berne, and J. Rieckermann, 2012: Using Markov switching models to infer dry and rainy periods from telecommunication microwave link signals. Atmos. Meas. Tech., 5, 18471859, https://doi.org/10.5194/amt-5-1847-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinevich, A., H. Messer, and P. Alpert, 2009: Frontal rainfall observation by a commercial microwave communication network. J. Appl. Meteor. Climatol., 48, 13171334, https://doi.org/10.1175/2008JAMC2014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 899 219 5
PDF Downloads 879 173 2