Impact of Multiple Altimeter Data and Mean Dynamic Topography in a Global Analysis and Forecasting System

Mathieu Hamon Mercator Ocean, Ramonville-Saint-Agne, France

Search for other papers by Mathieu Hamon in
Current site
Google Scholar
PubMed
Close
,
Eric Greiner CLS, Ramonville-Saint-Agne, France

Search for other papers by Eric Greiner in
Current site
Google Scholar
PubMed
Close
,
Pierre-Yves Le Traon Mercator Ocean, Ramonville-Saint-Agne, and IFREMER, Plouzané, France

Search for other papers by Pierre-Yves Le Traon in
Current site
Google Scholar
PubMed
Close
, and
Elisabeth Remy Mercator Ocean, Ramonville-Saint-Agne, France

Search for other papers by Elisabeth Remy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mathieu Hamon, mathieu.hamon@mercator-ocean.fr

Abstract

Satellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mathieu Hamon, mathieu.hamon@mercator-ocean.fr
Save
  • Benkiran, M., and E. Greiner, 2008: Impact of the incremental analysis updates on a real-time system of the North Atlantic Ocean. J. Atmos. Oceanic Technol., 25, 20552073, https://doi.org/10.1175/2008JTECHO537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takas, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabanes, C., and Coauthors, 2013: The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci., 9, 118, https://doi.org/10.5194/os-9-1-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., and F. Lyard, 2003: Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Polli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dibarboure, G., M. I. Pujol, F. Briol, P. Y. Le Traon, G. Larnicol, N. Picot, F. Mertz, and M. Ablain, 2011: Jason-2 in DUACS: Updated system description, first tandem results and impact on processing and products. Mar. Geod., 34, 214241, https://doi.org/10.1080/01490419.2011.584826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynold stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 60316 622, https://doi.org/10.1029/2000JC000205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greiner, E., and C. Périgaud, 1994: Assimilation of Geosat altimetric data in a nonlinear reduced-gravity model of the Indian Ocean. Part I: Adjoint approach and model-data consistency. J. Phys. Oceanogr., 24, 17831804, https://doi.org/10.1175/1520-0485(1994)024<1783:AOGADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lea, D. J., P. Drecourt, A. K. Haines, and J. Martin, 2008: Ocean altimeter assimilation with observational and model-bias correction. Quart. J. Roy. Meteor. Soc., 134, 17611774, https://doi.org/10.1002/qj.320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lea, D. J., M. J. Martin, and P. R. Oke, 2014: Demonstrating the complementarity of observations in an operational ocean forecasting system. Quart. J. Roy. Meteor. Soc., 140, 20372049, https://doi.org/10.1002/qj.2281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2013: Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci., 9, 5781, https://doi.org/10.5194/os-9-57-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018a: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci., 14, 10931126, https://doi.org/10.5194/os-14-1093-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018b: The Mercator Ocean global high-resolution monitoring and forecasting system. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 563–592, https://doi.org/10.17125/gov2018.ch20.

    • Crossref
    • Export Citation
  • Le Traon, P. Y., G. Dibarboure, G. Jacobs, M. Martin, E. Remy, and A. Schiller, 2017: Use of satellite altimetry for operational oceanography. Satellite Altimetry over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 581–604.

    • Crossref
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Madec, G., and Coauthors, 2008: NEMO. IPSL Tech. Rep.

  • Oddo, P., M. Adani, N. Pinardi, C. Fratianni, M. Tonani, and D. Pettenuzzo, 2009: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci., 5, 461473, https://doi.org/10.5194/os-5-461-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2013: Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model. 67, 5270, https://doi.org/10.1016/j.ocemod.2013.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2015: Assessing the impact of observations on ocean forecasts and reanalyses: Part 2. Regional applications. J. Oper. Oceanogr., 8 (Suppl.), s63s79, https://doi.org/10.1080/1755876X.2015.1022080.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., Y. Faugère, G. Larnicol, and P.-Y. Le Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., M.-I. Pujol, G. Larnicol, P.-Y. Le Traon, and M.-H. Rio, 2007: Mesoscale mapping capabilities of multisatellite altimeter missions: First results with real data in the Mediterranean Sea. J. Mar. Syst., 65, 190211, https://doi.org/10.1016/j.jmarsys.2004.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., P. Schaeffer, F. Hernandez, and J.-M. Lemoine, 2005: The estimation of the ocean mean dynamic topography through the combination of altimetric data, in situ measurements and GRACE geoid: From global to regional studies. GOCINA Int. Workshop, Luxembourg City, Luxembourg, European Center for Geodynamics and Seismology.

  • Rio, M.-H., S. Guinehut, and G. Larnicol, 2011: New CNES CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res., 116, C07018, https://doi.org/10.1029/2010JC006505.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., A. Pascual, P.-M. Poulain, M. Menna, B. Barcelo, and J. Tintoré, 2014: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci., 10, 731744, https://doi.org/10.5194/os-10-731-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storkey, D., and Coauthors, 2010: Forecasting the ocean state using NEMO: The new FOAM system. J. Oper. Oceanogr., 3, 315, https://doi.org/10.1080/1755876X.2010.11020109.

    • Search Google Scholar
    • Export Citation
  • Tonani, M., N. Pinardi, C. Fratianni, J. Pistoia, S. Dobricic, S. Pensieri, M. de Alfonso, and K. Nittis, 2009: Mediterranean Forecasting System: Forecast and analysis assessment through skill scores. Ocean Sci., 5, 649660, https://doi.org/10.5194/os-5-649-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrier, S., P.-Y. Le Traon, and E. Remy, 2017: Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system. Ocean Sci., 13, 10771092, https://doi.org/10.5194/os-13-1077-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 40 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 742 367 14
PDF Downloads 402 96 9