• Austin, R., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., A. Protat, A. Plana-Fattori, M. Giraud, J.-P. Vinson, and N. Grand, 2008: Comparison of airborne and spaceborne 95-GHz radar reflectivity and evaluation of multiple scattering effects in spaceborne measurements. J. Atmos. Oceanic Technol., 25, 19831995, https://doi.org/10.1175/2008JTECHA1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: The microphysical characterisation of West African mesoscale convective anvils. Quart. J. Roy. Meteor. Soc., 136, 323344, https://doi.org/10.1002/qj.557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317, https://doi.org/10.1002/qj.389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229, https://doi.org/10.1175/1520-0426(1995)012<0201:AEOAGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. P. R. Saunders, M. W. Gallagher, K. N. Bower, M. J. Flynn, T. W. Choularton, J. Whiteway, and R. P. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131, 16951712, https://doi.org/10.1256/qj.03.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy, J.-F. Gayet, and C. Jouan, 2013: Retrieval of polar ice cloud properties using RALI platform during POLARCAT campaign. J. Atmos. Oceanic Technol., 30, 5773, https://doi.org/10.1175/JTECH-D-11-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezitter, F., A. Grandin, J. L. Brenguier, F. Hervy, H. Schlager, P. Villedieu, and G. Zalamansky, 2013: HAIC—High altitude ice crystals. Proc. Fifth Atmospheric and Space Environments Conf., San Diego, CA, American Institute of Aeronautics and Astronautics, 2674, https://doi.org/10.2514/6.2013-2674.

    • Crossref
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical and oceanic convection. Atmos. Chem. Phys., 14, 11 36711 392, https://doi.org/10.5194/acp-14-11367-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, E., and Coauthors, 2017: Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems. Atmos. Meas. Tech., 10, 22392252, https://doi.org/10.5194/amt-10-2239-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., H. Sauvageot, and A. J. Illingworth, 2003: Cloud liquid water and ice content retrieval by multiwavelength radar. J. Atmos. Oceanic Technol., 20, 12641275, https://doi.org/10.1175/1520-0426(2003)020<1264:CLWAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2012: On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment. Atmos. Chem. Phys., 12, 727744, https://doi.org/10.5194/acp-12-727-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2008: Precipitating snow retrievals from combined airborne cloud radar and millimeter-wave radiometer observations. J. Appl. Meteor. Climatol., 47, 16341650, https://doi.org/10.1175/2007JAMC1728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., L. Tian, G. M. Heymsfield, A. Tokay, W. S. Olson, A. J. Heymsfield, and A. Bansemer, 2018: Nonparametric methodology to estimate precipitating ice from multiple-frequency radar reflectivity observations. J. Appl. Meteor. Climatol., 57, 26052622, https://doi.org/10.1175/JAMC-D-18-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, S. Matrosov, and L. Tian, 2008: The 94-GHz radar dim band: Relevance to ice cloud properties and CloudSat. Geophys. Res. Lett., 35, L03802, https://doi.org/10.1029/2007GL031361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., M. J. Hiley, R. Bennartz, S. Kneifel, and S. Tanelli, 2014: Triple-frequency radar reflectivity signatures of snow: Observations and comparisons with theoretical ice particle scattering models. J. Appl. Meteor. Climatol., 53, 10801098, https://doi.org/10.1175/JAMC-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., D. Moisseev, V. Chandrasekar, and J. Koskinen, 2011: Mapping radar reflectivity values of snowfall between frequency bands. IEEE Trans. Geosci. Remote Sens., 49, 30473058, https://doi.org/10.1109/TGRS.2011.2117432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., S. Kneifel, D. Moisseev, J. Tyynela, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, https://doi.org/10.1029/2012JD017680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479, https://doi.org/10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 2002: Centimeter and Millimeter Wavelength Radars in Meteorology. Lhermitte, 550 pp.

  • Li, L., and Coauthors, 2001: Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements. J. Atmos. Oceanic Technol., 18, 13451353, https://doi.org/10.1175/1520-0426(2001)018<1345:ROAAUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., G. M. Heymsfield, L. Tian, and P. E. Racette, 2005: Measurements of ocean surface backscattering using an airborne 95-GHz cloud radar—Implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22, 10331045, https://doi.org/10.1175/JTECH1722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation modeling of moist air and suspended water/ice particles below 1000 GHz. Preprints, Electromagnetic Wave Propagation Panel Symp., Palma de Mallorca, Spain, Advisory Group for Aerospace Research and Development, 3.1–3.10.

  • Matrosov, S., 2009: A method to estimate vertically integrated amounts of cloud ice and liquid mean rain rate in stratiform precipitation from radar and ancillary data. J. Appl. Meteor. Climatol., 48, 13981410, https://doi.org/10.1175/2009JAMC2106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S., G. Mace, R. Marchand, M. Shupe, A. Hallar, and I. McCubbin, 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, https://doi.org/10.1175/JTECH-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnett, J. C. M., 1904: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc., 203A, 385420, https://doi.org/10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575, https://doi.org/10.1016/0022-4073(96)00002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, https://doi.org/10.1175/2009JTECHA1246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2016: The measured relationship between ice water content and cloud radar reflectivity in tropical convective clouds. J. Appl. Meteor. Climatol., 55, 17071729, https://doi.org/10.1175/JAMC-D-15-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Ciffelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, https://doi.org/10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2018: An assessment of cloud total water content and particle size from flight test campaign measurements in high ice water content, mixed phase/ice crystal icing conditions: Primary in-situ measurements. Federal Aviation Administration Rep. DOT/FAA/TC-18/1, 243 pp.

  • Wood, N. B., and T. S. L’Ecuyer, 2018: Level 2C snow profile process description and interface control document: Product version P1 R05. NASA JPL Doc., 26 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 342 217 21
PDF Downloads 356 235 33

W-Band (95 GHz) Radar Attenuation in Tropical Stratiform Ice Anvils

View More View Less
  • 1 Australian Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 2 Laboratoire Atmosphère, Milieux, Observations Spatiales, Université Versailles Saint-Quentin, IPSL, CNRS, Sorbonne Université, Guyancourt, France
  • | 3 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 4 Laboratoire de Météorologie Physique, Université Blaise Pascal, Clermont-Ferrand, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km−1 for reflectivities between 13 and 18 dBZ, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km−1 for reflectivities of 20 dBZ. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m−3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alain Protat, alain.protat@bom.gov.au

Abstract

Attenuation of the W-band (95 GHz) radar signal by atmospheric ice particles has long been neglected in cloud microphysics studies. In this work, 95-GHz airborne multibeam cloud radar observations in tropical stratiform ice anvils are used to estimate vertical profiles of 95-GHz attenuation. Two techniques are developed and compared, using very different assumptions. The first technique examines statistical reflectivity differences between repeated aircraft passes through the same cloud mass at different altitudes. The second technique exploits reflectivity differences between two different pathlengths through the same cloud, using the multibeam capabilities of the cloud radar. Using the first technique, the two-way attenuation coefficient produced by stratiform ice particles ranges between 1 and 1.6 dB km−1 for reflectivities between 13 and 18 dBZ, with an expected increase of attenuation with reflectivity. Using the second technique, the multibeam results confirm these high attenuation coefficient values and expand the reflectivity range, with typical attenuation coefficient values of up to 3–4 dB km−1 for reflectivities of 20 dBZ. The potential impact of attenuation on precipitating-ice-cloud microphysics retrievals is quantified using vertical profiles of the mean and the 99th percentile of ice water content derived from noncorrected and attenuation-corrected reflectivities. A large impact is found on the 99th percentile of ice water content, which increases by 0.3–0.4 g m−3 up to 11-km height. Finally, T-matrix calculations of attenuation constrained by measured particle size distributions, ice crystal mass–size, and projected area–size relationships are found to largely underestimate cloud radar attenuation estimates.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alain Protat, alain.protat@bom.gov.au
Save