• ARGANS, 2017: L2OS v662 reprocessing report. ARGANS Doc. SO-RP-ARG-GS-0109, 101 pp., https://earth.esa.int/documents/10174/477987/SMOS-Level-2-Ocean-Salinity-v662-Reprocessing-Report.

  • Bao, S., R. Zhang, H. Wang, G. Wang, and M. Zhang, 2016: Bias estimation and assessment of satellite sea surface salinity gridded products based on in situ salinity measurements (in Chinese). Acta Oceanol. Sin., 38, 3445.

    • Search Google Scholar
    • Export Citation
  • Barcelona Expert Centre, 2014: Validation of SMOS-BEC products from 2013001 reprocessing campaign: Years 2010–2013 dataset. Barcelona Expert Centre Quality Rep. BEC-SMOS-0005-QR, 44 pp., http://bec.icm.csic.es/doc/BEC-SMOS-0005-QR.pdf.

  • Barcelona Expert Centre, 2017: Validation of debiased non-Bayesian BEC advanced sea surface salinity products: Years 2011–2016. Barcelona Expert Centre Quality Rep. BEC-SMOS-0009-QR, 12 pp., http://bec.icm.csic.es/doc/BEC-SMOS-0009-QR.pdf.

  • Bender, C. M., and S. A. Orszag, 2013: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, 593 pp.

  • Boutin, J., N. Martin, X. Yin, J. Font, N. Reul, and P. Spurgeon, 2012: First assessment of SMOS data over open ocean: Part II—Sea surface salinity. IEEE Trans. Geosci. Remote Sens., 50, 16621675, https://doi.org/10.1109/TGRS.2012.2184546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, J., and Coauthors, 2016: Satellite and in situ salinity understanding near-surface stratification and subfootprint variability. Bull. Amer. Meteor. Soc., 97, 13911407, https://doi.org/10.1175/BAMS-D-15-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., X. Long, R. Wu, and S. Wang, 2008: Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea. J. Mar. Syst., 74, 711720, https://doi.org/10.1016/j.jmarsys.2007.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drucker, R., and S. C. Riser, 2014: Validation of Aquarius sea surface salinity with Argo: Analysis of error due to depth of measurement and vertical salinity stratification. J. Geophys. Res. Oceans, 119, 46264637, https://doi.org/10.1002/2014JC010045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Font, J., and Coauthors, 2010: SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE, 98, 649–665, https://doi.org/10.1109/JPROC.2009.2033096.

    • Crossref
    • Export Citation
  • Garcia-Eidell, C., J. C. Comiso, E. Dinnat, and L. Brucker, 2017: Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products. J. Geophys. Res. Oceans, 122, 77177736, https://doi.org/10.1002/2017JC013184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoareau, N., M. Umbert, J. Martínez, A. Turiel, and J. Ballabrera-Poy, 2014: On the potential of data assimilation to generate SMOS-level 4 maps of sea surface salinity. Remote Sens. Environ., 146, 188200, https://doi.org/10.1016/j.rse.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., A. Turiel, and E. Garc, 2007: Microcanonical multifractal formalism: Application to the estimation of ocean surface velocities. J. Geophys. Res. Oceans, 112, C05024, https://doi.org/10.1029/2006JC003878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS L: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Export Citation
  • Killworth, P. D., 1980: Waves in the ocean. P.H. LeBlond and L.A. Mysak. Elsevier Oceanography Series, 20. Elsevier, Amsterdam, 1978, 602 pp., U.S. $98.00, Dfl. 237.00. Dyn. Atmos. Oceans, 4, 141–142, https://doi.org/10.1016/0377-0265(80)90007-X.

    • Crossref
    • Export Citation
  • Locarnini, R. A., S. Levitus, T. Boyer, J. I. Antonov, A. V. Mishonov, H. E. Garcia, M. Zweng, and J. R. Reagan, 2012: World Ocean Atlas 2013: Improved vertical and horizontal resolution. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS41C-1732.

  • Mallat, S., 1999: A Wavelet Tour of Signal Processing. 2nd ed. Elsevier, 620 pp.

    • Crossref
    • Export Citation
  • Martín-Neira, M., and Coauthors, 2016: SMOS instrument performance and calibration after six years in orbit. Remote Sens. Environ., 180, 1939, https://doi.org/10.1016/j.rse.2016.02.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., H. Phillips, N. Smith, and J. Sprintall, 1991: Space and time scales for optimal interpolation of temperature—Tropical Pacific Ocean. Prog. Oceanogr., 28, 189218, https://doi.org/10.1016/0079-6611(91)90008-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nardelli, B. B., 2012: A novel approach for the high-resolution interpolation of in situ sea surface salinity. J. Atmos. Oceanic Technol., 29, 867879, https://doi.org/10.1175/JTECH-D-11-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieves, V., C. Llebot, A. Turiel, J. Sole, E. García, M. Estrada, and D. Blasco, 2007: Common turbulent signature in sea surface temperature and chlorophyll maps. Geophys. Res. Lett., 34, L23602, https://doi.org/10.1029/2007GL030823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olmedo, E., J. Martínez, M. Umbert, N. Hoareau, M. Portabella, J. Ballabrera-Poy, and A. Turiel, 2016: Improving time and space resolution of SMOS salinity maps using multifractal fusion. Remote Sens. Environ., 180, 246263, https://doi.org/10.1016/j.rse.2016.02.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olmedo, E., J. Martínez, A. Turiel, J. Ballabrera-Poy, and M. Portabella, 2017: Debiased non-Bayesian retrieval: A novel approach to SMOS sea surface salinity. Remote Sens. Environ., 193, 103126, https://doi.org/10.1016/j.rse.2017.02.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olmedo, E., I. Taupier-Letage, A. Turiel, and A. Alvera-Azcárate, 2018: Improving SMOS sea surface salinity in the western Mediterranean sea through multivariate and multifractal analysis. Remote Sens., 10, 485, https://doi.org/10.3390/rs10030485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer, 710 pp., http://link.springer.com/10.1007/978-3-662-25730-2.

  • Pont, O., A. Turiel, and C. J. Pérez-Vicente, 2009: Empirical evidences of a common multifractal signature in economic, biological and physical systems. Physica A, 388, 20252035, https://doi.org/10.1016/j.physa.2009.01.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pont, O., A. Turiel, and H. Yahia, 2011: An optimized algorithm for the evaluation of local singularity exponents in digital signals. International Workshop on Combinatorial Image Analysis, J. K. Aggarwal et al., Eds., Lecture Notes in Computer Science, Vol. 6636, 346–357.

    • Crossref
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, https://doi.org/10.1175/2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 35453562, https://doi.org/10.1175/2010JCLI3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, J. P., T. Meissner, and F. J. Wentz, 2016: Ocean surface salinity from the SMAP sensor. Ocean Sciences Meeting 2016, New Orleans, LA, Amer. Geophys. Union, Abstract PO44E.

  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Elsevier, 555 pp.

    • Crossref
    • Export Citation
  • Thyng, K. M., C. A. Greene, R. D. Hetland, H. M. Zimmerle, and S. F. DiMarco, 2016: True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29, (3), 9–13, https://doi.org/10.5670/oceanog.2016.66.

    • Crossref
    • Export Citation
  • Turiel, A., and A. Del Pozo, 2002: Reconstructing images from their most singular fractal manifold. IEEE Trans. Image Process., 11, 345350, https://doi.org/10.1109/TIP.2002.999668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turiel, A., J. Isern-Fontanet, E. Garcia-Ladona, and J. Font, 2005: Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys. Rev. Lett., 95, 104502, https://doi.org/10.1103/PhysRevLett.95.104502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turiel, A., J. Solé, V. Nieves, J. Ballabrera-Poy, and E. García-Ladona, 2008a: Tracking oceanic currents by singularity analysis of microwave sea surface temperature images. Remote Sens. Environ., 112, 22462260, https://doi.org/10.1016/j.rse.2007.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turiel, A., H. Yahia, and C. J. Pérez-Vicente, 2008b: Microcanonical multifractal formalism—A geometrical approach to multifractal systems: Part I. Singularity analysis. J. Phys., 41A, https://doi.org/10.1088/1751-8113/41/1/015501.

    • Search Google Scholar
    • Export Citation
  • Tzortzi, E., M. Srokosz, C. Gommenginger, and S. A. Josey, 2016: Spatial and temporal scales of variability in tropical Atlantic sea surface salinity from the SMOS and Aquarius satellite missions. Remote Sens. Environ., 180, 418430, https://doi.org/10.1016/j.rse.2016.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umbert, M., N. Hoareau, A. Turiel, and J. Ballabrera-Poy, 2014: New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps. Remote Sens. Environ., 146, 172187, https://doi.org/10.1016/j.rse.2013.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umbert, M., S. Guimbard, G. Lagerloef, L. Thompson, M. Portabella, J. Ballabrera-Poy, and A. Turiel, 2015: Detecting the surface salinity signature of Gulf Stream cold-core rings in Aquarius synergistic products. J. Geophys. Res. Oceans, 120, 859874, https://doi.org/10.1002/2014JC010466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., R. Zhang, J. Chen, H. Wang, and L. Wang, 2014: The correlation length-scale optimized by baroclinic Rossby radius of deformation and its improvement to optimum interpolation (in Chinese). Acta Oceanol. Sin., 36, 109118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 146 89 9
PDF Downloads 146 97 10

Improved Multifractal Fusion Method to Blend SMOS Sea Surface Salinity Based on Semiparametric Weight Function

View More View Less
  • 1 College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
  • | 2 Beijing Institute of Applied Meteorology, Beijing, China
  • | 3 College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The multifractal fusion method has proved to be an effective algorithm to mitigate the noise of the sea surface salinity (SSS) of Soil Moisture Ocean Salinity (SMOS) mission. However, the traditional nonparametric weight function used in this method is unable to fully capture the dynamic evolution of the oceanic environment. Considering the multiscale, nonuniform, anisotropic, and flow-dependent nature of the ocean, a prototype with the so-called flexible circle (FLC) weight function or flexible ellipse (FLE) weight function with a set of predefined parameters is proposed in this paper. The improved weight functions could draw dynamic information from the sea surface temperature, Rossby radius of deformation, and surface geostrophic flow to improve the quality of the remotely sensed SSS. The validation against the in situ data indicates that the improved weight functions perform better than the traditional one with a reduced root-mean-square (RMS) and standard deviation (STD) of the differences with respect to EN 4.2.0 profiles (from 0.50 and 0.46 to 0.42 and 0.38 for FLC and 0.39 and 0.36 for FLE in the global ocean). In particular, the FLE scheme could highlight the variation of the strong currents without affecting the computational efficiency. Furthermore, this paper discusses the influences of the error distribution on the fusion results and underlines the importance of error-based adaptions for further improvements.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huizan Wang, wanghuizan@126.com

Abstract

The multifractal fusion method has proved to be an effective algorithm to mitigate the noise of the sea surface salinity (SSS) of Soil Moisture Ocean Salinity (SMOS) mission. However, the traditional nonparametric weight function used in this method is unable to fully capture the dynamic evolution of the oceanic environment. Considering the multiscale, nonuniform, anisotropic, and flow-dependent nature of the ocean, a prototype with the so-called flexible circle (FLC) weight function or flexible ellipse (FLE) weight function with a set of predefined parameters is proposed in this paper. The improved weight functions could draw dynamic information from the sea surface temperature, Rossby radius of deformation, and surface geostrophic flow to improve the quality of the remotely sensed SSS. The validation against the in situ data indicates that the improved weight functions perform better than the traditional one with a reduced root-mean-square (RMS) and standard deviation (STD) of the differences with respect to EN 4.2.0 profiles (from 0.50 and 0.46 to 0.42 and 0.38 for FLC and 0.39 and 0.36 for FLE in the global ocean). In particular, the FLE scheme could highlight the variation of the strong currents without affecting the computational efficiency. Furthermore, this paper discusses the influences of the error distribution on the fusion results and underlines the importance of error-based adaptions for further improvements.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huizan Wang, wanghuizan@126.com
Save